Skip to main content
Log in

Sensitivity gains, linearity, and spectral reproducibility in nonuniformly sampled multidimensional MAS NMR spectra of high dynamic range

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C,15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high-quality artifact-free datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atreya HS, Szyperski T (2005) Rapid NMR data collection. Methods Enzymol 394:78–108

    Article  Google Scholar 

  • Balsgart NM, Vosegaard T (2012) Fast forward maximum entropy reconstruction of sparsely sampled data. J Magn Reson 223:164–169

    Google Scholar 

  • Coggins BE, Venters RA, Zhou P (2010) Radial sampling for fast NMR: concepts and practices over three decades. Prog Nucl Magn Reson Spectrosc 57:381–419

    Article  Google Scholar 

  • Daniell GJ, Hore PJ (1989) Maximum entropy and NMR, a new approach. J Magn Reson 84:515–536

    Google Scholar 

  • Davies SJ, Bauer C, Hore PJ, Freeman R (1988) Resolution enhancement by nonlinear data processing. “HOGWASH” and the maximum entropy method. J Magn Reson 76:476–493

    Google Scholar 

  • Dereppe JM, Jakus N (1988) Maximum entropy spectral analysis of NMR signals of solids. J Magn Reson 79:307–317

    Google Scholar 

  • Donoho DL, Johnstone IM, Stern AS, Hoch JC (1990) Does the maximum entropy method improve sensitivity? Proc Natl Acad Sci USA 87:5066–5068

    Google Scholar 

  • Eghbalnia HR, Bahrami A, Tonelli M, Hallenga K, Markley JL (2005) High-resolution iterative frequency identification for NMR as a general strategy for multidimensional data collection. J Am Chem Soc 127:12528–12536

    Google Scholar 

  • Ernst RR (1966) Sensitivity enhancement in magnetic resonance. Adv Magn Reson 2:1–135

    Article  Google Scholar 

  • Franks WT, Atreya HS, Szyperski T, Rienstra CM (2010) GFT projection NMR spectroscopy for proteins in the solid state. J Biomol NMR 48:213–223

    Article  Google Scholar 

  • Goddard TD, Kneller DG (2004) SPARKY 3. University of California, San Francisco

  • Hiller S, Fiorito F, Wuthrich K, Wider G (2005) Automated projection spectroscopy (APSY). Proc Natl Acad Sci USA 102:10876–10881

    Google Scholar 

  • Hoch JC (1985) Maximum entropy signal processing of two-dimensional NMR data. J Magn Reson 64:436–440

    Google Scholar 

  • Hoch JC, Stern AS (1996) NMR data processing. Wiley-Liss, New York

    Google Scholar 

  • Hoch JC, Stern AS, Donoho DL, Johstone IM (1990) Maximum entropy reconstruction of complex (phase-sensitive) spectra. J Magn Reson 86:236–246

    Google Scholar 

  • Hoch JC, Maciejewski M, Mobli M, Schuyler A, Stern AS (2012) Nonuniform sampling in multidimensional NMR. In: Harris RK, Wasylishen RE (eds) Encyclopedia of nuclear magnetic resonance, vol 6. Wiley, Chichester, pp 2999–3013

  • Holland DJ, Bostock MJ, Gladden LF, Nielispach D (2011) Fast multidimensional NMR spectroscopy using compressed sensing. Angew Chem 50:6548–6551

    Google Scholar 

  • Hore PJ (1985) NMR data processing using the maximum entropy method. J Magn Reson 62:561–567

    Google Scholar 

  • Hyberts SG, Heffron GJ, Tarragona NG, Solanky K, Edmonds KA, Luithardt H, Fejzo J, Chorev M, Aktas H, Colson K, Falchuk KH, Halperin JA, Wagner G (2007) Ultrahigh-resolution H-1–C-13 HSQC spectra of metabolite mixtures using nonlinear sampling and forward maximum entropy reconstruction. J Am Chem Soc 129:5108–5116

    Article  Google Scholar 

  • Hyberts SG, Frueh DP, Arthanari H, Wagner G (2009) FM reconstruction of non-uniformly sampled protein NMR data at higher dimensions and optimization by distillation. J Biomol NMR 45:283–294

    Google Scholar 

  • Hyberts SG, Milbradt AG, Wagner AB, Arthanari H, Wagner G (2012) Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional poisson gap scheduling. J Biomol NMR 52:315–327

    Google Scholar 

  • Jaravine VA, Ibraghimov I, Orekov VY (2006) Removal of a time barrier for high-resolution multidimensional NMR spectroscopy. Nat Met 3:605–607

    Google Scholar 

  • Jeong GW, Borer PN, Wang SS, Levy GC (1993) Maximum-likelihood-constrained deconvolution of two-dimensional NMR spectra. Accuracy of spectral quantification. J Magn Reson 103:123–134

    Google Scholar 

  • Jiang B, Jiang XW, Xiao N, Zhang X, Jiang L, Mao XA, Liu ML (2010) Gridding and fast fourier transformation on non-uniformly sparse sampled multidimensional NMR data. J Magn Reson 204:165–168

    Google Scholar 

  • Jones DH, Opella SJ (2006) Application of maximum entropy reconstruction to PISEMA spectra. J Magn Reson 179:105–113

    Article  ADS  Google Scholar 

  • Kazimierczuk K, Stanek J, Zawadzka-Kazimierczuk A, Kozminski W (2010) Random sampling in multidimensional NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 57:420–434

    Article  Google Scholar 

  • Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125:1385–1393

    Google Scholar 

  • Kupce E, Freeman R (2003) Projection-reconstruction of three-dimensional NMR spectra. J Am Chem Soc 125:13958–13959

    Google Scholar 

  • Laue ED, Skilling J, Staunton J, Sibisi S, Brereton RG (1985) Maximum entropy method in nuclear magnetic resonance spectroscopy. J Magn Reson 62:437–452

    Google Scholar 

  • Lin EC, Opella SJ (2013) Sampling scheme and compressed sensing applied to solid-state NMR spectroscopy. J Magn Reson 237C:40–48

    Article  ADS  Google Scholar 

  • Maciejewski MW, Stern AS, King GF, Hoch JC, Webb GA (2006) Nonuniform sampling in biomolecular NMR modern magnetic resonance. Springer, Netherlands

    Google Scholar 

  • Malmodin D, Billeter M (2006) Robust and versatile interpretation of spectra with coupled evolution periods using multi-way decomposition. Magn Reson Chem 44:S185–S195

    Google Scholar 

  • Mandelshtam VA, Taylor HS, Shaka AJ (1998) Application of the filter diagonalization method to one- and two-dimensional NMR spectra. J Magn Reson 133:304–312

    Google Scholar 

  • Mansfield P (1984) Spatial-mapping of the chemical-shift in NMR. Magn Reson Med 1:370–386

    Article  Google Scholar 

  • Marulanda D, Tasayco ML, McDermott A, Cataldi M, Arriaran V, Polenova T (2004) Magic angle spinning solid-state NMR spectroscopy for structural studies of protein interfaces. Resonance assignments of differentially enriched Escherichia coli thioredoxin reassembled by fragment complementation. J Am Chem Soc 126:16608–16620

    Article  Google Scholar 

  • Marulanda D, Tasayco ML, Cataldi M, Arriaran V, Polenova T (2005) Resonance assignments and secondary structure analysis of E. coli thioredoxin by magic angle spinning solid-state NMR spectroscopy. J Phys Chem B 109:18135–18145

    Article  Google Scholar 

  • Matsuki Y, Eddy MT, Herzfeld J (2009) Spectroscopy by integration of frequency and time domain information for fast acquisition of high-resolution dark spectra. J Am Chem Soc 131:4648–4656

    Article  Google Scholar 

  • Matsuki Y, Eddy MT, Griffin RG, Herzfeld J (2010) Rapid three-dimensional MAS NMR spectroscopy at critical sensitivity. Angew Chem Int Ed 49:9215–9218

    Article  Google Scholar 

  • Paramasivam S, Suiter CL, Hou G, Sun S, Palmer M, Hoch JC, Rovnyak D, Polenova T (2012) Enhanced sensitivity by nonuniform sampling enables multidimensional MAS NMR spectroscopy of protein assemblies. J Phys Chem B 116:7416–7427

    Article  Google Scholar 

  • Rovnyak D, Filip C, Itin B, Stern AS, Wagner G, Griffin RG, Hoch JC (2003) Multiple-quantum magic-angle spinning spectroscopy using nonlinear sampling. J Magn Reson 161:43–55

    Article  ADS  Google Scholar 

  • Rovnyak D, Frueh DP, Sastry M, Sun ZJ, Stern AS, Hoch JC, Wagner G (2004) Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. J Magn Reson 170:15–21

    Article  ADS  Google Scholar 

  • Rovnyak D, Sarcone M, Jiang Z (2011) Sensitivity enhancement for maximally resolved two-dimensional NMR by nonuniform sampling. Magn Reson Chem 49:483–491

    Article  Google Scholar 

  • Schmieder P, Stern AS, Wagner G, Hoch JC (1993) Application of nonlinear sampling schemes to COSY-type spectra. J Biomol NMR 3:569–576

    Article  Google Scholar 

  • Schuyler AD, Maciejewski MW, Stern AS, Hoch JC (2013) Formalism for hypercomplex multidimensional NMR employing partial-component subsampling. J Magn Reson 227:20–24

    Article  ADS  Google Scholar 

  • Shrot Y, Frydman L (2011) Compressed sensing and the reconstruction of ultrafast 2D NMR data: principles and biomolecular applications. J Magn Reson 209:352–358

    Google Scholar 

  • Sibisi S, Skilling J, Brereton RG, Laue ED, Staunton J (1984) Maximum entropy signal processing in practical NMR spectroscopy. Nature 311:446–447

    Google Scholar 

  • Sun S, Yan S, Guo C, Li M, Hoch JC, Williams JC, Polenova T (2012) A time-saving strategy for MAS NMR spectroscopy by combining nonuniform sampling and paramagnetic relaxation assisted condensed data collection. J Phys Chem B 116:13585–13596

    Article  Google Scholar 

  • Takegoshi K, Nakamura S, Terao T (2001) 13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637

    Article  ADS  Google Scholar 

  • Yang J, Paramasivam S, Marulanda D, Cataldi M, Tasayco ML, Polenova T (2007) Magic angle spinning NMR spectroscopy of thioredoxin reassemblies. Magn Reson Chem 45:S73–S83

    Article  Google Scholar 

  • Yang J, Tasayco ML, Polenova T (2008) Magic angle spinning NMR experiments for structural studies of differentially enriched protein interfaces and protein assemblies. J Am Chem Soc 130:5798–5807

    Article  Google Scholar 

  • Yang J, Tasayco ML, Polenova T (2009) Dynamics of reassembled thioredoxin studied by magic angle spinning NMR: snapshots from different time scales. J Am Chem Soc 131:13690–13702

    Article  Google Scholar 

  • Zhang F, Bruschweiler R (2004) Indirect covariance NMR spectroscopy. J Am Chem Soc 126:13180–13181

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH Grants R01GM085306, P50GM082251, and P30GM103519 from NIGMS, and P30RR031160 from NCRR), and by Agilent University Collaborative Research award. We acknowledge the support of the National Science Foundation (NSF Grant CHE0959496) for the acquisition of the 850 MHz NMR spectrometer at the University of Delaware. The 21.1 T spectra were acquired at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the United States Department of Energy’s Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory in Richland, WA. The kind assistance of Andrew Lipton, Sarah Burton, Jesse Sears, Michael Froehlke, and Joseph Ford during our visit to EMSL is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana Polenova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10858_2014_9824_MOESM1_ESM.pdf

Supplementary material 1 (PDF 2347 kb): Figures for stack view of FFT and MINT reconstructions, correlation plots of absolute peak intensity vs. sensitivity enhancements, relative sensitivity enhancement vs. T2*/TSMP, correlation plots of absolute peak intensities vs. line width differences (NUS - US), correlation plots for sub-sampled NUS data, and comparison of NUS reconstructions using different λ values. Tables summarizing sensitivity and line widths for each of the ten 50 % NUS experiments acquired with equivalent experiment time compared to US for l-histidine and expanded experimental details

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suiter, C.L., Paramasivam, S., Hou, G. et al. Sensitivity gains, linearity, and spectral reproducibility in nonuniformly sampled multidimensional MAS NMR spectra of high dynamic range. J Biomol NMR 59, 57–73 (2014). https://doi.org/10.1007/s10858-014-9824-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-014-9824-4

Keywords

Navigation