Skip to main content
Log in

Measuring residual dipolar couplings at high hydrostatic pressure: robustness of alignment media to high pressure

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Among other perturbations, high hydrostatic pressure has proven to be a mild yet efficient way to unfold proteins. Combining pressure perturbation with NMR spectroscopy allows for a residue-per-residue description of folding reactions. Accessing the full power of NMR spectroscopy under pressure involves the investigation of conformational sampling using orientational restraints such as residual dipolar couplings (RDCs) under conditions of partial alignment. The aim of this study was to identify and characterize stable and pressure resistant alignment media for measurement of RDCs at high pressure. Four alignment media were tested. A C12E5/n-hexanol alcohol mixture remains stable from 1 to 2,500 bar, whereas Pf1 phage and DNA nanotubes undergo a reversible transition between 300 and 900 bar. Phospholipid bicelles are stable only until 300 bar at ambient temperature. Hence, RDCs can be measured at high pressure, and their interpretation will provide atomic details of the structural and dynamic perturbations on unfolded or partially folded states of proteins under pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bax A, Grishaev A (2005) Weak alignment NMR: a hawk-eyed view of biomolecular structure. Curr Opin Struct Biol 15(5):563–570. doi:10.1016/j.sbi.2005.08.006

    Article  Google Scholar 

  • Bellot G, McClintock MA, Lin C, Shih WM (2011) Recovery of intact DNA nanostructures after agarose gel-based separation. Nat Methods 8(3):192–194. doi:10.1038/nmeth0311-192

    Article  Google Scholar 

  • Blackledge M (2005) Recent progress in the study of biomolecular structure and dynamics in solution from residual dipolar couplings. Prog Nucl Magn Reson Spectrosc 46(1):23–61. doi:10.1016/j.pnmrs.2004.11.002

    Article  Google Scholar 

  • Boehr DD, McElheny D, Dyson HJ, Wright PE (2006) The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313(5793):1638–1642. doi:10.1126/science.1130258

    Article  ADS  Google Scholar 

  • Bouvignies G, Bernado P, Meier S, Cho K, Grzesiek S, Bruschweiler R, Blackledge M (2005) Identification of slow correlated motions in proteins using residual dipolar and hydrogen-bond scalar couplings. Proc Natl Acad Sci USA 102(39):13885–13890. doi:10.1073/pnas.0505129102

    Article  ADS  Google Scholar 

  • Brandts JF, Oliveira RJ, Westort C (1970) Thermodynamics of protein denaturation. Effect of pressure on the denaturation of ribonuclease A. Biochemistry 9(4):1038–1047

    Article  Google Scholar 

  • Brunner E, Arnold MR, Kremer W, Kalbitzer HR (2001) Pressure-stability of phospholipid bicelles: measurement of residual dipolar couplings under extreme conditions. J Biomol NMR 21(2):173–176

    Article  Google Scholar 

  • Cordier F, Dingley AJ, Grzesiek S (1999) A doublet-separated sensitivity-enhanced HSQC for the determination of scalar and dipolar one-bond J-couplings. J Biomol NMR 13(2):175–180

    Article  Google Scholar 

  • D’Aquino JA, Gomez J, Hilser VJ, Lee KH, Amzel LM, Freire E (1996) The magnitude of the backbone conformational entropy change in protein folding. Proteins 25(2):143–156. doi:10.1002/(SICI)1097-0134(199606)25:2<143:AID-PROT1>3.0.CO;2-J

    Google Scholar 

  • Dill KA, MacCallum JL (2012) The protein-folding problem, 50 years on. Science 338(6110):1042–1046. doi:10.1126/science.1219021

    Article  ADS  Google Scholar 

  • Dosset P, Hus JC, Marion D, Blackledge M (2001) A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings. J Biomol NMR 20(3):223–231

    Article  Google Scholar 

  • Dyson HJ, Wright PE (2004) Unfolded proteins and protein folding studied by NMR. Chem Rev 104(8):3607–3622. doi:10.1021/cr030403s

    Article  Google Scholar 

  • Englander SW (2000) Protein folding intermediates and pathways studied by hydrogen exchange. Annu Rev Biophys Biomol Struct 29:213–238. doi:10.1146/annurev.biophys.29.1.213

    Article  Google Scholar 

  • Fu L, Freire E (1992) On the origin of the enthalpy and entropy convergence temperatures in protein folding. Proc Natl Acad Sci USA 89(19):9335–9338

    Article  ADS  Google Scholar 

  • Fu Y, Wand AJ (2013) Partial alignment and measurement of residual dipolar couplings of proteins under high hydrostatic pressure. J Biomol NMR. doi:10.1007/s10858-013-9754-6

    Google Scholar 

  • Fuentes EJ, Wand AJ (1998) Local stability and dynamics of apocytochrome b562 examined by the dependence of hydrogen exchange on hydrostatic pressure. Biochemistry 37(28):9877–9883. doi:10.1021/bi980894o

    Article  Google Scholar 

  • Gomez J, Hilser VJ, Xie D, Freire E (1995) The heat capacity of proteins. Proteins 22(4):404–412. doi:10.1002/prot.340220410

    Article  Google Scholar 

  • Grzesiek S, Bax A, Clore GM, Gronenborn AM, Hu JS, Kaufman J, Palmer I, Stahl SJ, Wingfield PT (1996) The solution structure of HIV-1 Nef reveals an unexpected fold and permits delineation of the binding surface for the SH3 domain of Hck tyrosine protein kinase. Nat Struct Biol 3(4):340–345

    Article  Google Scholar 

  • Hansen MR, Mueller L, Pardi A (1998) Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat Struct Biol 5(12):1065–1074. doi:10.1038/4176

    Article  Google Scholar 

  • Hawley SA (1971) Reversible pressure–temperature denaturation of chymotrypsinogen. Biochemistry 10(13):2436–2442

    Article  Google Scholar 

  • Hilser VJ, Townsend BD, Freire E (1997) Structure-based statistical thermodynamic analysis of T4 lysozyme mutants: structural mapping of cooperative interactions. Biophys Chem 64(1–3):69–79

    Article  Google Scholar 

  • Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1–63

    Article  Google Scholar 

  • Kitahara R, Yokoyama S, Akasaka K (2005) NMR snapshots of a fluctuating protein structure: ubiquitin at 30 bar-3 kbar. J Mol Biol 347(2):277–285. doi:10.1016/j.jmb.2005.01.052

    Article  Google Scholar 

  • Kitahara R, Hata K, Maeno A, Akasaka K, Chimenti MS, Garcia-Moreno EB, Schroer MA, Jeworrek C, Tolan M, Winter R, Roche J, Roumestand C, Montet de Guillen K, Royer CA (2011) Structural plasticity of staphylococcal nuclease probed by perturbation with pressure and pH. Proteins 79(4):1293–1305. doi:10.1002/prot.22966

    Article  Google Scholar 

  • Korzhnev DM, Bezsonova I, Evanics F, Taulier N, Zhou Z, Bai Y, Chalikian TV, Prosser RS, Kay LE (2006) Probing the transition state ensemble of a protein folding reaction by pressure-dependent NMR relaxation dispersion. J Am Chem Soc 128(15):5262–5269. doi:10.1021/ja0601540

    Article  Google Scholar 

  • Li H, Yamada H, Akasaka K, Gronenborn AM (2000) Pressure alters electronic orbital overlap in hydrogen bonds. J Biomol NMR 18(3):207–216

    Article  Google Scholar 

  • Meier S, Grzesiek S, Blackledge M (2007) Mapping the conformational landscape of urea-denatured ubiquitin using residual dipolar couplings. J Am Chem Soc 129(31):9799–9807. doi:10.1021/ja0724339

    Article  Google Scholar 

  • Murphy KP, Privalov PL, Gill SJ (1990) Common features of protein unfolding and dissolution of hydrophobic compounds. Science 247(4942):559–561

    Article  ADS  Google Scholar 

  • Nisius L, Grzesiek S (2012) Key stabilizing elements of protein structure identified through pressure and temperature perturbation of its hydrogen bond network. Nat Chem 4(9):711–717. doi:10.1038/nchem.1396

    Article  Google Scholar 

  • Ottiger M, Bax A (1998) Characterization of magnetically oriented phospholipid micelles for measurement of dipolar couplings in macromolecules. J Biomol NMR 12(3):361–372

    Article  Google Scholar 

  • Privalov PL, Gill SJ (1988) Stability of protein structure and hydrophobic interaction. Adv Protein Chem 39:191–234

    Article  Google Scholar 

  • Roche J, Caro JA, Dellarole M, Guca E, Royer CA, García-Moreno BE, Garcia AE, Roumestand C (2012a) Structural, energetic and dynamic responses of the native state ensemble of staphylococcal nuclease to cavity-creating mutations. Proteins. doi:10.1002/prot.24231

    Google Scholar 

  • Roche J, Caro JA, Norberto DR, Barthe P, Roumestand C, Schlessman JL, Garcia AE, Garcia-Moreno BE, Royer CA (2012b) Cavities determine the pressure unfolding of proteins. Proc Natl Acad Sci USA 109(18):6945–6950. doi:10.1073/pnas.1200915109

    Article  ADS  Google Scholar 

  • Roche J, Dellarole M, Caro JA, Guca E, Norberto DR, Yang Y, Garcia AE, Roumestand C, Garcia-Moreno B, Royer CA (2012c) Remodeling of the folding free energy landscape of staphylococcal nuclease by cavity-creating mutations. Biochemistry 51(47):9535–9546. doi:10.1021/bi301071z

    Article  Google Scholar 

  • Rouget JB, Aksel T, Roche J, Saldana JL, Garcia AE, Barrick D, Royer CA (2011) Size and sequence and the volume change of protein folding. J Am Chem Soc 133(15):6020–6027. doi:10.1021/ja200228w

    Article  Google Scholar 

  • Ruckert M, Otting G (2000) Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. J Am Chem Soc 122(32):7793–7797

    Article  Google Scholar 

  • Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278(5340):1111–1114

    Article  ADS  Google Scholar 

  • Tolman JR, Flanagan JM, Kennedy MA, Prestegard JH (1995) Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc Natl Acad Sci USA 92(20):9279–9283

    Article  ADS  Google Scholar 

  • Wang H, Eberstadt M, Olejniczak E, Meadows R, Fesik S (1998) A liquid crystalline medium for measuring residual dipolar couplings over a wide range of temperatures. J Biomol NMR 12(3):443–446. doi:10.1023/a:1008361931685

    Article  Google Scholar 

  • Weigelt J (1998) Single scan, sensitivity- and gradient-enhanced TROSY for multidimensional NMR experiments (vol 120, pg 10778, 1998). J Am Chem Soc 120(48):12706. doi:10.1021/ja9855287

    Article  Google Scholar 

  • Wolynes PG, Eaton WA, Fersht AR (2012) Chemical physics of protein folding. Proc Natl Acad Sci USA 109(44):17770–17771. doi:10.1073/pnas.1215733109

    Article  ADS  Google Scholar 

  • Zipp A, Kauzmann W (1973) Pressure denaturation of metmyoglobin. Biochemistry 12(21):4217–4228

    Article  Google Scholar 

  • Zweckstetter M, Bax A (2001) Characterization of molecular alignment in aqueous suspensions of Pf1 bacteriophage. J Biomol NMR 20(4):365–377

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Drs. P. Bernadó for valuable discussion, F. Allemand for sample preparation and G. Bellot for providing DNA nanotubes. We gratefully acknowledge support from the Agence National de la Recherche, Grant PiriBio 09-455024. High pressure NMR work was supported by the French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INSB-05-01 and the Structural Biology RIO/IbiSA platform (Centre de Biochimie Structurale).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Sibille.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 364 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sibille, N., Dellarole, M., Royer, C. et al. Measuring residual dipolar couplings at high hydrostatic pressure: robustness of alignment media to high pressure. J Biomol NMR 58, 9–16 (2014). https://doi.org/10.1007/s10858-013-9798-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9798-7

Keywords

Navigation