Skip to main content

Advertisement

Log in

Determining the depth of insertion of dynamically invisible membrane peptides by gel-phase 1H spin diffusion heteronuclear correlation NMR

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Solid-state NMR determination of the depth of insertion of membrane peptides and proteins has so far utilized 1H spin diffusion and paramagnetic relaxation enhancement experiments, which are typically conducted in the liquid-crystalline phase of the lipid bilayer. For membrane proteins or peptide assemblies that undergo intermediate-timescale motion in the liquid-crystalline membrane, these approaches are no longer applicable because the protein signals are broadened beyond detection. Here we show that the rigid-solid HETCOR experiment, with an additional spin diffusion period, can be used to determine the depth of proteins in gel-phase lipid membranes, where the proteins are immobilized to give high-intensity solid-state NMR spectra. Demonstration on two membrane peptides with known insertion depths shows that well-inserted peptides give rise to high lipid cross peak intensities and low water cross peaks within a modest spin diffusion mixing time, while surface-bound peptides have higher water than lipid cross peaks. Furthermore, well-inserted membrane peptides have nearly identical 1H cross sections as the lipid chains, indicating equilibration of the peptide and lipid magnetization. Using this approach, we measured the membrane topology of the α-helical fusion peptide of the paramyxovirus, PIV5, in the anionic POPC/POPG membrane, in which the peptide undergoes intermediate-timescale motion at physiological temperature. The gel-phase HETCOR spectra indicate that the α-helical fusion peptide is well inserted into the POPC/POPG bilayer, spanning both leaflets. This insertion motif gives insight into the functional role of the α-helical PIV5 fusion peptide in virus-cell membrane fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Abdul-Wahid MS, Verardi R, Veglia G, Prosser RS (2011) Topology and immersion depth of an integral membrane protein by paramagnetic rates from dissolved oxygen. J Biomol NMR 51:173–183

    Article  Google Scholar 

  • Bielecki A, Kolbert AC, Levitt MH (1989) Frequency-switched pulse sequences: homonuclear decoupling and dilute spin NMR in solids. Chem Phys Lett 155:341–346

    Article  ADS  Google Scholar 

  • Bradshaw JP, Davies SM, Hauss T (1998) Interaction of substance P with phospholipid bilayers: a neutron diffraction study. Biophys J 75:889–895

    Article  Google Scholar 

  • Buffy JJ, Hong T, Yamaguchi S, Waring A, Lehrer RI, Hong M (2003) Solid-state NMR investigation of the depth of insertion of protegin-1 in lipid bilayers using paramagnetic Mn2+. Biophys J 85:2363–2373

    Article  Google Scholar 

  • Cady SD, Goodman C, Tatko C, DeGrado WF, Hong M (2007) Determining the orientation of uniaxially rotating membrane proteins using unoriented samples: a 2H, 13C, and 15 N solid-state NMR investigation of the dynamics and orientation of a transmembrane helical bundle. J Am Chem Soc 129:5719–5729

    Article  Google Scholar 

  • Chattopadhyay A, London E (1987) Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry 26:39–45

    Article  Google Scholar 

  • Chenal A, Prongidi-Fix L, Perier A, Aisenbrey C, Vernier G, Lambotte S, Haertlein M, Dauvergne MT, Fragneto G, Bechinger B, Gillet D, Forge V, Ferrand M (2009) Deciphering membrane insertion of the diphtheria toxin T domain by specular neutron reflectometry and solid-state NMR spectroscopy. J Mol Biol 391:872–883

    Article  Google Scholar 

  • Doherty T, Hong M (2009) High-resolution solid-state NMR of anisotropically mobile molecules under very low-power (1)H decoupling and moderate magic-angle spinning. J Magn Reson 199:225–232

    Article  ADS  Google Scholar 

  • Esposito G, Lesk AM, Molinari H, Motta A, Niccolai N, Pastore A (1992) Probing protein structure by solvent perturbation of nuclear magnetic resonance spectra. Nuclear magnetic resonance spectral editing and topological mapping in proteins by paramagnetic relaxation filtering. J Mol Biol 224:659–670

    Article  Google Scholar 

  • Gabrys CM, Yang R, Wasniewski CM, Yang J, Canlas CG, Qiang W, Sun Y, Weliky DP (2010) Nuclear magnetic resonance evidence for retention of a lamellar membrane phase with curvature in the presence of large quantities of the HIV fusion peptide. Biochim Biophys Acta 1798:194–201

    Article  Google Scholar 

  • Gallagher GJ, Hong M, Thompson LK (2004) Solid-state NMR spin diffusion for measurement of membrane-bound peptide structure: gramicidin A. Biochemistry 43:7899–7906

    Article  Google Scholar 

  • Grobner G, Glaubitz C, Watts A (1999) Probing membrane surfaces and the location of membrane-embedded peptides by (13)C MAS NMR using lanthanide ions. J Magn Reson 141:335–339

    Article  ADS  Google Scholar 

  • Han X, Bushweller JH, Cafiso DS, Tamm LK (2001) Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat Struct Biol 8:715–720

    Article  Google Scholar 

  • Harrison SC (2008) Viral membrane fusion. Nature Struc Mol Biol 15:690–698

    Article  Google Scholar 

  • Hilty C, Wider G, Fernández C, Wüthrich K (2004) Membrane protein-lipid interactions in mixed micelles studied by NMR spectroscopy with the use of paramagnetic reagents. ChemBioChem 5:467–473

    Article  Google Scholar 

  • Hohlweg W, Kosol S, Zangger K (2012) Determining the orientation and localization of membrane-bound peptides. Curr Protein Pept Sci 13:267–279

    Article  Google Scholar 

  • Hong M, Su Y (2011) Structure and dynamics of cationic membrane peptides and proteins: insights from solid-state NMR. Protein Sci 20:641–655

    Article  Google Scholar 

  • Hong M, Zhang Y, Hu F (2012) Membrane protein structure and dynamics from NMR spectroscopy. Annu Rev Phys Chem 63:1–24

    Article  ADS  Google Scholar 

  • Huster D, Yao XL, Hong M (2002) Membrane protein topology probed by 1H spin diffusion from lipids using solid-state NMR spectroscopy. J Am Chem Soc 124:874–883

    Article  Google Scholar 

  • Jacob J, Baker B, Bryant RG, Cafiso DS (1999) Distance estimates from paramagnetic enhancements of nuclear relaxation in linear and flexible model peptides. Biophys J 77:1086–1092

    Article  Google Scholar 

  • Kleinschmidt JH, Tamm LK (1996) Folding intermediates of a beta-barrel membrane protein. Kinetic evidence for a multi-step membrane insertion mechanism. Biochemistry 35:12993–13000

    Article  Google Scholar 

  • Kumashiro KK, Schmidt-Rohr K, Murphy OJ, Ouellette KL, Cramer WA, Thompson LK (1998) A novel tool for probing membrane protein structure: solid-state NMR with proton spin diffusion and X-nucleus detection. J Am Chem Soc 120:5043–5051

    Article  Google Scholar 

  • Lamb RA, Jardetzky TS (2007) Structural basis of viral invasion: lessons from paramyxovirus F. Curr Opin Struct Biol 17:427–436

    Article  Google Scholar 

  • Lee M, Goldburg WI (1965) Nuclear-magnetic-resonance line narrowing by a rotating rf field. Phys Rev 140:A1261–A1271

    Article  ADS  Google Scholar 

  • Lewis BA, Harbison GS, Herzfeld J, Griffin RG (1985) NMR structural analysis of a membrane protein: bacteriorhodopsin peptide backbone orientation and motion. Biochemistry 24:4671–4679

    Article  Google Scholar 

  • Li S, Su Y, Luo W, Hong M (2010) Water-protein interactions of an arginine-rich membrane peptide in lipid bilayers investigated by solid-state nuclear magnetic resonance spectroscopy. J Phys Chem B 114:4063–4069

    Article  Google Scholar 

  • Lorieau JL, Louis JM, Bax A (2010) The complete influenza hemagglutinin fusion domain adopts a tight helical hairpin arrangement at the lipid:water interface. Proc Natl Acad Sci USA 107:11341–11346

    Article  ADS  Google Scholar 

  • Mani R, Cady SD, Tang M, Waring AJ, Lehrer RI, Hong M (2006) Membrane-dependent oligomeric structure and pore formation of a beta-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR. Proc Natl Acad Sci USA 103:16242–16247

    Article  ADS  Google Scholar 

  • Oldfield E, Bowers JL, Forbes J (1987) High-resolution proton and carbon-13 NMR of membranes: why sonicate? Biochemistry 26:6919–6923

    Article  Google Scholar 

  • Prosser RS, Luchette PA, Westerman PW (2000) Using O2 to probe membrane immersion depth by 19F NMR. Proc Natl Acad Sci USA 97:9967–9971

    Article  ADS  Google Scholar 

  • Qiang W, Sun Y, Weliky DP (2009) A strong correlation between fusogenicity and membrane insertion depth of the HIV fusion peptide. Proc Natl Acad Sci USA 106:15314–15319

    Article  ADS  Google Scholar 

  • Saffman PG, Delbruck M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci USA 72:3111–3113

    Article  ADS  Google Scholar 

  • Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99:559–565

    Article  ADS  Google Scholar 

  • Su Y, Mani R, Hong M (2008) Asymmetric insertion of membrane proteins in lipid bilayers by solid-state NMR paramagnetic relaxation enhancement: a cell-penetrating peptide example. J Am Chem Soc 130:8856–8864

    Article  Google Scholar 

  • Su Y, Waring AJ, Ruchala P, Hong M (2011) Structures of β-hairpin antimicrobial protegrin peptides in lipopolysaccharide membranes: mechanism of gram selectivity obtained from solid-state nuclear magnetic resonance. Biochemistry 50:2072–2083

    Article  Google Scholar 

  • Tang M, Hong M (2009) Structure and mechanism of beta-hairpin antimicrobial peptides in lipid bilayers from solid-state NMR spectroscopy. Mol BioSyst 5:317–322

    Article  Google Scholar 

  • Tang M, Waring AJ, Hong M (2007) Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state NMR. J Am Chem Soc 129:11438–11446

    Article  Google Scholar 

  • Tang M, Waring AJ, Hong M (2009) Effects of arginine density on the membrane-bound structure of a cationic antimicrobial peptide from solid-state NMR. Biochim Biophys Acta 1788:514–521

    Article  Google Scholar 

  • Voglino L, Simon SA, McIntosh TJ (1999) Orientation of LamB signal peptides in bilayers: influence of lipid probes on peptide binding and interpretation of fluorescence quenching data. Biochemistry 38:7509–7516

    Article  Google Scholar 

  • Wang T, Cady SD, Hong M (2012) NMR determination of protein partitioning into membrane domains with different curvatures and application to the influenza M2 peptide. Biophys J 102:787–794

    Article  Google Scholar 

  • Yao H, Hong M (2013) Membrane-dependent conformation, dynamics, and lipid interactions of the fusion peptide of the paramyxovirus PIV5 from solid-state NMR. J Mol Biol 425:563–576

    Article  Google Scholar 

  • Yin HS, Paterson RG, Wen X, Lamb RA, Jardetzky TS (2005) Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proc Natl Acad Sci USA 102:9288–9293

    Article  ADS  Google Scholar 

  • Yin HS, Wen X, Paterson RG, Lamb RA, Jardetzky TS (2006) Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature 439:38–44

    Article  ADS  Google Scholar 

  • Zoonens M, Reshetnyak YK, Engelman DM (2008) Bilayer interactions of pHLIP, a peptide that can deliver drugs and target tumors. Biophys J 95:225–235

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded by NIH grant GM066976.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Yao, H. & Hong, M. Determining the depth of insertion of dynamically invisible membrane peptides by gel-phase 1H spin diffusion heteronuclear correlation NMR. J Biomol NMR 56, 139–148 (2013). https://doi.org/10.1007/s10858-013-9730-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9730-1

Keywords

Navigation