Skip to main content
Log in

Narrowing the conformational space sampled by two-domain proteins with paramagnetic probes in both domains

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Calmodulin is a two-domain protein which in solution can adopt a variety of conformations upon reorientation of its domains. The maximum occurrence (MO) of a set of calmodulin conformations that are representative of the overall conformational space possibly sampled by the protein, has been calculated from the paramagnetism-based restraints. These restraints were measured after inclusion of a lanthanide binding tag in the C-terminal domain to supplement the data obtained by substitution of three paramagnetic lanthanide ions to the calcium ion in the second calcium binding loop of the N-terminal domain. The analysis shows that the availability of paramagnetic restraints arising from metal ions placed on both domains, reduces the MO of the conformations to different extents, thereby helping to identify those conformations that can be mostly sampled by the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aoyagi M, Arvai AS, Tainer JA, Getzoff ED (2003) Structural basis for endothelial nitric oxide synthase binding to calmodulin. EMBO J 22:766–775

    Article  Google Scholar 

  • Assfalg M, Bertini I, Turano P, Mauk AG, Winkler JR, Gray BH (2003) 15 N–1H residual dipolar coupling analysis of native and alkaline-K79A S. cerevisiae cytochrome c. Biophys J 84:3917–3923

    Article  Google Scholar 

  • Babu YS, Bugg CE, Cook WJ (1988) Structure of calmodulin refined at 2.2 Å resolution. J Mol Biol 204:191–204

    Article  Google Scholar 

  • Balayssac S, Bertini I, Luchinat C, Parigi G, Piccioli M (2006) 13C direct detected NMR increases the detectability of residual dipolar couplings. J Am Chem Soc 128:15042–15043

    Article  Google Scholar 

  • Banci L, Bertini I, Bren KL, Cremonini MA, Gray HB, Luchinat C, Turano P (1996) The use of pseudo contact shifts to refine solution structures of paramagnetic metalloproteins: Met80Ala cyano-cytochrome c as an example. J Biol Inorg Chem 1:117–126

    Article  Google Scholar 

  • Banci L, Bertini I, Cavallaro G, Giachetti A, Luchinat C, Parigi G (2004) Paramagnetism-based restraints for Xplor-NIH. J Biomol NMR 28:249–261

    Article  Google Scholar 

  • Barbato G, Ikura M, Kay LE, Pastor RW, Bax A (1992) Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy; the central helix is flexible. Biochemistry 31:5269–5278

    Article  Google Scholar 

  • Bashir Q, Volkov AN, Ullmann GM, Ubbink M (2010) Visualization of the encounter ensemble of the transient electron transfer complex of cytochrome c and cytochrome c peroxidase. J Am Chem Soc 132:241–247

    Article  Google Scholar 

  • Bax A, Ikura M (1991) An efficient 3D NMR technique for correlating the proton and 15 N backbone amide resonances with the alpha-carbon of the preceding residue. J Biomol NMR 1:99–104

    Article  Google Scholar 

  • Bernado P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI (2007) Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc 129:5656–5664

    Article  Google Scholar 

  • Bertini I, Luchinat C, Parigi G (2002) Paramagnetic constraints: an aid for quick solution structure determination of paramagnetic metalloproteins. Concepts Magn Reson 14:259–286

    Article  Google Scholar 

  • Bertini I, Gelis I, Katsaros N, Luchinat C, Provenzani A (2003) Tuning the affinity for lanthanides of calcium binding proteins. Biochemistry 42:8011–8021

    Article  Google Scholar 

  • Bertini I, Del Bianco C, Gelis I, Katsaros N, Luchinat C, Parigi G, Peana M, Provenzani A, Zoroddu MA (2004) Experimentally exploring the conformational space sampled by domain reorientation in calmodulin. Proc Natl Acad Sci USA 101:6841–6846

    Article  ADS  Google Scholar 

  • Bertini I, Gupta YK, Luchinat C, Parigi G, Peana M, Sgheri L, Yuan J (2007) Paramagnetism-based NMR restraints provide maximum allowed probabilities for the different conformations of partially independent protein domains. J Am Chem Soc 129:12786–12794

    Article  Google Scholar 

  • Bertini I, Luchinat C, Parigi G, Pierattelli R (2008) Perspectives in NMR of paramagnetic proteins. Dalton Trans 2008:3782–3790

    Article  Google Scholar 

  • Bertini I, Kursula P, Luchinat C, Parigi G, Vahokoski J, Willmans M, Yuan J (2009) Accurate solution structures of proteins from X-ray data and minimal set of NMR data: calmodulin peptide complexes as examples. J Am Chem Soc 131:5134–5144

    Article  Google Scholar 

  • Bertini I, Giachetti A, Luchinat C, Parigi G, Petoukhov MV, Pierattelli R, Ravera E, Svergun DI (2010) Conformational space of flexible biological macromolecules from average data. J Am Chem Soc 132:13553–13558

    Article  Google Scholar 

  • Cho JH, O’Connell N, Raleigh DP, Palmer AG III (2010) Phi-value analysis for ultrafast folding proteins by NMR relaxation dispersion. J Am Chem Soc 132:450–451

    Article  Google Scholar 

  • Chou JJ, Li S, Klee CB, Bax A (2001) Solution structure of Ca2+ calmodulin reveals flexible hand-like properties of its domains. Nature Struct Biol 8:990–997

    Article  Google Scholar 

  • Eichmüller C, Skrynnikov NR (2007) Observation of μs time-scale protein dynamics in the presence of Ln3+ ions: application to the N-terminal domain of cardiac troponin C. J Biomol NMR 37:79–95

    Article  Google Scholar 

  • Fallon JL, Quiocho FA (2003) A closed compact structure of native Ca2+-calmodulin. Structure 11:1303–1307

    Article  Google Scholar 

  • Fischer MWF, Zeng L, Majumdar A, Zuiderweg ERP (1998) Characterizing semi local motions in proteins by NMR relaxation studies. Proc Natl Acad Sci USA 95:8016–8019

    Article  ADS  Google Scholar 

  • Fragai M, Luchinat C, Parigi G (2006) “Four-dimensional” protein structures: examples from metalloproteins. Acc Chem Res 39:909–917

    Article  Google Scholar 

  • Hass MAS, Keizers PHJ, Blok A, Hiruma Y, Ubbink M (2010) Validation of a lanthanide tag for the analysis of protein dynamics by paramagnetic NMR spectroscopy. J Am Chem Soc 132:9952–9953

    Article  Google Scholar 

  • Häussinger D, Huang J, Grzesiek S (2009) DOTA-M8: an extremely rigid, high-affinity lanthanide chelating tag for PCS NMR spectroscopy. J Am Chem Soc 131:14761–14767

    Article  Google Scholar 

  • Huang YJ, Montelione GT (2005) Structural biology: proteins flex to function. Nature 438:36–37

    Article  ADS  Google Scholar 

  • Iwahara J, Clore GM (2006) Detecting transient intermediates in macromolecular binding by paramagnetic NMR. Nature 440:1227–1230

    Article  ADS  Google Scholar 

  • Kay LE (2005) NMR studies of protein structure and dynamics. J Magn Reson 173:193–207

    Article  ADS  Google Scholar 

  • Kay LE, Ikura M, Tschudin R, Bax A (1990) Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514

    Google Scholar 

  • Keizers PH, Desreux JF, Overhand M, Ubbink M (2007) Increased paramagnetic effect of a lanthanide protein probe by two-point attachment. J Am Chem Soc 129:9292–9293

    Article  Google Scholar 

  • Keizers PHJ, Saragliadis A, Hiruma Y, Overhand M, Ubbink M (2008) Design, synthesis, and evaluation of a lanthanide chelating protein probe: CLaNP-5 yields predictable paramagnetic effects independent of environment. J Am Chem Soc 130:14802–14812

    Article  Google Scholar 

  • Korzhnev DM, Religa TL, Banachewicz W, Fersht AR, Kay LE (2010) A transient and low-populated protein-folding intermediate at atomic resolution. Science 329:1312–1316

    Article  ADS  Google Scholar 

  • Kurokawa H, Osawa M, Kurihara H, Katayama N, Tokumitsu H, Swindells MB, Kainosho M, Ikura M (2001) Target-induced conformational adaptation of calmodulin revealed by the crystal structure of a complex with nematode Ca2+/calmodulin-dependent kinase kinase peptide. J Mol Biol 312:59–68

    Article  Google Scholar 

  • Longinetti M, Luchinat C, Parigi G, Sgheri L (2006) Efficient determination of the most favored orientations of protein domains from paramagnetic NMR data. Inv Probl 22:1485–1502

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mal TK, Skrynnikov NR, Yap KL, Kay LE, Ikura M (2002) Detecting protein kinase recognition modes of calmodulin by residual dipolar couplings in solution NMR. Biochemistry 41:12899–12906

    Article  Google Scholar 

  • Maximciuc AA, Putkey JA, Shamoo Y, MacKenzie KR (2006) Complex of calmodulin with a ryanodine receptor target reveals a novel, flexible binding mode. Structure 14:1547–1556

    Article  Google Scholar 

  • Meador WE, Means AR, Quiocho FA (1992) Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin-peptide complex. Science 257:1251–1255

    Article  ADS  Google Scholar 

  • Meador WE, Means AR, Quiocho FA (1993) Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science 262:1718–1721

    Article  ADS  Google Scholar 

  • Muhandiram DR, Kay LE (1994) Gradient-enhanced triple resonance three-dimensional NMR experiments with improved sensitivity. J Magn Reson Ser B 103:203–216

    Article  Google Scholar 

  • Schmitz C, Stanton-Cook MJ, Su XC, Otting G, Huber T (2008) Numbat: an interactive software tool for fitting ∆χ-tensors to molecular coordinates using pseudo contact shifts. J Biomol NMR 41:179–189

    Article  Google Scholar 

  • Schumacher MA, Rivard AF, Bächinger HP, Adelman JP (2001) Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 410:1120–1124

    Article  ADS  Google Scholar 

  • Sgheri L (2010) Joining RDC data from flexible protein domains. Inv Probl 26(12):115021

    Article  MathSciNet  ADS  Google Scholar 

  • Su XC, Otting G (2010) Paramagnetic labelling of proteins and oligonucleotides for NMR. J Biomol NMR 46:101–112

    Article  Google Scholar 

  • Su XC, Huber T, Dixon NE, Otting G (2006) Site-specific labelling of proteins with a rigid lanthanide-binding tag. Chem Bio Chem 7:1599–1604

    Google Scholar 

  • Su XC, Man B, Beeren S, Liang H, Simonsen S, Schmitz C, Huber T, Messerle BA, Otting G (2008) A dipicolinic acid tag for rigid lanthanide tagging of proteins and paramagnetic NMR spectroscopy. J Am Chem Soc 130:10486–10487

    Article  Google Scholar 

  • Tang C, Schwieters CD, Clore GM (2007) Open-to-close transition in apo maltose-binding protein observed by paramagnetic NMR. Nature 449:1078–1082

    Article  ADS  Google Scholar 

  • Vallurupalli P, Hansen DF, Kay LE (2008) Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy. Proc Natl Acad Sci USA 105:11766–11771

    Article  ADS  Google Scholar 

  • Vlasie MD, Fernández-Busnadiego R, Prudêncio M, Ubbink M (2008) Conformation of pseudoazurin in the 152 kDa electron transfer complex with nitrite reductase determined by paramagnetic NMR. J Mol Biol 375:1405–1415

    Article  Google Scholar 

  • Volkov AN, Worrall JAR, Holtzmann E, Ubbink M (2006) Solution structure and dynamics of the complex between cytochrome c and cytochrome c peroxidase determined by paramagnetic NMR. Proc Natl Acad Sci USA 103:18945–18950

    Article  ADS  Google Scholar 

  • Wang X, Srisailam S, Ye AA, Lemak A, Arrowsmith C, Prestegard JH, Tian F (2007) Domain-domain motions in proteins from time-modulated pseudocontact shifts. J Biomol NMR 39:53–61

    Article  Google Scholar 

  • Xu X, Reinle W, Hannemann F, Konarev PV, Svergun DI, Bernhardt R, Ubbink M (2008) Dynamics in a pure encounter complex of two proteins studied by solution scattering and paramagnetic NMR spectroscopy. J Am Chem Soc 130:6395–6403

    Article  Google Scholar 

  • Zhuang T, Lee HS, Imperiali B, Prestegard JH (2008) Structure determination of a Galectin-3-carbohydrate complex using paramagnetism-based NMR constraints. Protein Sci 17:1220–1231

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by MIUR-FIRB contracts RBLA032ZM7, RBRN07BMCT and RBIP06LSS2, by the European Commission, contracts Bio-NMR n. 261863, East-NMR n. 228461, SPINE2-COMPLEXES 031220, and We-NMR 261572, and by the Netherlands Organisation for Scientific Research (NWO), grants 700.58.405 (P.H.J.K.) and 700.58.441 (W.M.L. and M.U.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Luchinat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1383 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dasgupta, S., Hu, X., Keizers, P.H.J. et al. Narrowing the conformational space sampled by two-domain proteins with paramagnetic probes in both domains. J Biomol NMR 51, 253–263 (2011). https://doi.org/10.1007/s10858-011-9532-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-011-9532-2

Keywords

Navigation