Skip to main content
Log in

Methods to determine slow diffusion coefficients of biomolecules. Applications to Engrailed 2, a partially disordered protein

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We present new NMR methods to measure slow translational diffusion coefficients of biomolecules. Like the heteronuclear stimulated echo experiment (XSTE), these new methods rely on the storage of information about spatial localization during the diffusion delay as longitudinal polarization of nuclei with long T1 such as nitrogen-15. The new BEST-XSTE sequence combines features of Band-selective Excitation Short-Transient (BEST) and XSTE methods. By avoiding the saturation of all protons except those of amide groups, one can increase the sensitivity by 45% in small proteins. The new experiment which combines band-Selective Optimized Flip-Angle Short-Transient with XSTE (SOFAST-XSTE) offers an alternative when very short recovery delays are desired. A modification of the HSQC-edited version of the XSTE experiment offers enhanced sensitivity and access to higher resolution in the indirect dimension. These new methods have been applied to detect changes in diffusion coefficients due to dimerization or proteolysis of Engrailed 2, a partially disordered protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahuja P, Sarkar R, Vasos PR, Bodenhausen G (2009) Diffusion coefficients of biomolecules using long-lived spin states. J Am Chem Soc 131:7498–7499. doi:10.1021/ja902030k

    Article  Google Scholar 

  • Altieri AS, Hinton DP, Byrd RA (1995) Association of biomolecular systems via pulsed field gradient NMR self-diffusion measurements. J Am Chem Soc 117:7566–7567. doi:10.1021/ja00133a03

    Article  Google Scholar 

  • Augé S, Schmit PO, Crutchfield CA, Islam MT, Harris DJ, Durand E, Clemancey M, Quoineaud AA, Lancelin JM, Prigent Y, Taulelle F, Delsuc MA (2009) NMR measure of translational diffusion and fractal dimension. Application to molecular mass measurement. J Phys Chem B 113:1914–1918. doi:10.1021/jp8094424

    Article  Google Scholar 

  • Augustyniak R, Balayssac S, Ferrage F, Bodenhausen G, Lequin O (2011) 1H, 13C and 15N resonance assignment of a 114-residue fragment of Engrailed 2 homeoprotein, a partially disordered protein. Biomol NMR Assign. doi: 10.1007/s12104-011-9306-5

  • Bernado P, Blackledge M (2009) A self-consistent description of the conformational behavior of chemically denatured proteins from NMR and small angle scattering. Biophys J 97:2839–2845. doi:10.1016/j.bpj.2009.08.044

    Article  Google Scholar 

  • Brand T, Cabrita E, Morris GA, Gunther R, Hofmann H, Berger S (2007) Residue-specific NH exchange rates studied by NMR diffusion experiments. J Magn Reson 187:97–104. doi:10.1016/j.jmr.2007.03.021

    Article  ADS  Google Scholar 

  • Brown WE, Wold F (1973) Alkyl isocyanates as active-site-specific reagents for serine proteases. Reaction properties. Biochemistry 12:828–834. doi:10.1021/bi00729a007

    Article  Google Scholar 

  • Buevich AV, Baum J (2002) Residue-specific real-time NMR diffusion experiments define the association states of proteins during folding. J Am Chem Soc 124:7156–7162. doi:10.1021/ja012699u

    Article  Google Scholar 

  • Cantor CR, Schimmel PR (1980) Biophysical chemistry, part II: techniques for the study of Biological Structure and Function. W.H. Freeman, San Francisco

    Google Scholar 

  • Carravetta M, Johannessen OG, Levitt MH (2004) Beyond the T1 limit: singlet nuclear spin states in low magnetic fields. Phys Rev Lett 92:153003–153004. doi:10.1103/PhysRevLett.92.153003

    Article  ADS  Google Scholar 

  • Cavadini S, Vasos P (2008) Singlet states open the way to longer time-scales in the measurement of diffusion by NMR spectroscopy. Concepts Magn Reson 32A:68–78. doi:10.1002/cmr.a.20100

    Article  Google Scholar 

  • Cavadini S, Dittmer J, Antonijevic S, Bodenhausen G (2005) Slow diffusion by singlet state NMR spectroscopy. J Am Chem Soc 127:15744–15748. doi:10.1021/ja052897b

    Article  Google Scholar 

  • Chang PT (2000) Chapter 21.4 diffusion. In: Physical chemistry for the chemical and biological sciences, 2nd edn, University Science Books, Sausalito, CA, pp 876–883

  • Choy WY, Mulder FAA, Crowhurst KA, Muhandiram DR, Millett IS, Doniach S, Forman-Kay JD, Kay LE (2002) Distribution of molecular size within an unfolded state ensemble using small-angle X-ray scattering and pulse field gradient NMR techniques. J Mol Biol 316:101–112. doi:10.1006/jmbi.2001.5328

    Article  Google Scholar 

  • Connell MA, Bowyer PJ, Bone PA, Davis AL, Swanson AG, Nilsson M, Morris GA (2009) Improving the accuracy of pulsed field gradient NMR diffusion experiments: Correction for gradient non-uniformity. J Magn Reson 198:121–131. doi:10.1016/j.jmr.2009.01.025

    Article  ADS  Google Scholar 

  • Danielsson J, Jarvet J, Damberg P, Graslund A (2002) Translational diffusion measured by PFG-NMR on full length and fragments of the Alzheimer Aβ(1–40) peptide. Determination of hydrodynamic radii of random coil peptides of varying length. Magn Reson Chem 40:S89–S97. doi:10.1002/mrc.1132

    Article  Google Scholar 

  • Danielsson J, Liljedahl L, Barany-Wallje E, Sønderby P, Kristensen LH, Martinez-Yamout MA, Dyson HJ, Wright PE, Poulsen FM, Maler L, Graslund A, Kragelund BB (2008) The intrinsically disordered RNR inhibitor Sml1 is a dynamic dimer. Biochemistry 47:13428–13437. doi:10.1021/bi801040b

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293. doi:10.1007/BF00197809

    Article  Google Scholar 

  • Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208. doi:10.1038/nrm1589

    Article  Google Scholar 

  • Ferrage F, Zoonens M, Warschawski DE, Popot J-L, Bodenhausen G (2003) Slow diffusion of macromolecular assemblies by a new pulsed field gradient NMR method. J Am Chem Soc 125:2541–2545. doi:10.1021/ja0211407

    Article  Google Scholar 

  • Ferrage F, Zoonens M, Warschawski DE, Popot J-L, Bodenhausen G (2004) Slow diffusion of macromolecular assemblies measured by a new pulsed field gradient NMR method. J Am Chem Soc 126:5654. doi:10.1021/ja033464g

    Article  Google Scholar 

  • Fraenkel E, Rould MA, Chambers KA, Pabo CO (1998) Engrailed homeodomain-DNA complex at 2.2 Å resolution: a detailed view of the interface and comparison with other engrailed structures. J Mol Biol 284:351–361. doi:10.1006/jmbi.1998.2147

    Article  Google Scholar 

  • Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93:93–141. doi:10.1016/0022-2364(91)90034-Q

    Google Scholar 

  • Grzesiek S, Bax A (1993) The importance of not saturating water in protein NMR. Application to sensitivity enhancement and NOE measurements. J Am Chem Soc 115:12593–12594. doi:10.1021/ja00079a052

    Article  Google Scholar 

  • Hahn EL (1950) Spin echoes. Phys Rev 80:580–594. doi:10.1103/PhysRev.80.580

    Article  ADS  MATH  Google Scholar 

  • Hsu S-TD, Fucini P, Cabrita LD, Launay H, Dobson CM, Christodoulou J (2007) Structure and dynamics of a ribosome-bound nascent chain by NMR spectroscopy. Proc Natl Acad Sci USA 104:16516–16521. doi:10.1073/pnas.0704664104

    Article  ADS  Google Scholar 

  • Jerschow A (2000) Thermal convection currents in NMR: flow profiles and implications for coherence pathway selection. J Magn Reson 145:125–131. doi:10.1006/jmre.2000.2083

    Article  ADS  Google Scholar 

  • Jerschow A, Müller N (1997) Suppression of convection artifacts in stimulated-echo diffusion experiments. Double-stimulated-echo experiments. J Magn Reson 125:372–375. doi:10.1006/jmre.1997.1123

    Article  ADS  Google Scholar 

  • Jerschow A, Müller N (1998) Diffusion-separated nuclear magnetic resonance spectroscopy of polymer mixtures. Macromolecules 31:6573–6578. doi:10.1021/ma9801772

    Article  ADS  Google Scholar 

  • Johnson CS (1999) Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog NMR Spectrosc 34:203–256. doi:10.1016/j.ab.2007.04.025

    Article  Google Scholar 

  • Klein-Seetharaman J, Oikawa M, Wirmer J, Duchardt E, Ueda T, Imoto T, Smith LJ, Dobson C, Schwalbe H (2002) Long-range interactions within a non-native protein. Science 295:1719–1722. doi:10.1126/science.1067680

    Article  ADS  Google Scholar 

  • Kupce E, Freeman R (1994) Wideband excitation with polychromatic pulses. J Magn Reson A 108:268–273. doi:10.1006/jmra.1994.1123

    Article  Google Scholar 

  • Li Y, Kim S, Brodsky B, Baum J (2005) Identification of partially disordered peptide intermediates through residue-specific NMR diffusion measurements. J Am Chem Soc 127:10490–10491. doi:10.1021/ja052801d

    Article  Google Scholar 

  • Li C, Wang Y, Pielak GJ (2009) Translational and rotational diffusion of a small globular protein under crowded conditions. J Phys Chem B 113:13390–13392. doi:10.1021/jp907744m

    Article  Google Scholar 

  • Martinez-Viviente E, Pregosin PS (2003) Low temperature H-1-, F-19-, and P-31-PGSE diffusion measurements. Applications to cationic alcohol complexes. Helv Chim Acta 86:2364–2378

    Article  Google Scholar 

  • McLachlan A, Richards J, Bilia A, Morris GA (2009) Constant time gradient HSQC-iDOSY: practical aspects. Magn Reson Chem 47:1081–1085. doi:10.1002/mrc.2518

    Article  Google Scholar 

  • Orekhov VY, Korzhnev DM, Pervushin KV, Hoffman E, Arseniev AS (1999) Sampling of protein dynamics in nanosecond time scale by 15 N NMR relaxation and self-diffusion measurements. J Biomol Struct Dynam 17:157–174

    Google Scholar 

  • Pervushin K, Vögeli B, Eletsky A (2002) Longitudinal 1H relaxation optimization in TROSY NMR spectroscopy. J Am Chem Soc 124:12898–12902. doi:10.1021/ja027149q

    Article  Google Scholar 

  • Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR spectoscopy of aqueous solutions. J Biomol NMR 2:661–665. doi:10.1007/bf02192855

    Article  Google Scholar 

  • Price WS (1998) Pulsed-field gradient nuclear magnetic resonance as tool for studying translational diffusion: part II. Experimental aspects. Concepts Magn Reson 10:197–237. doi:10.1002/(SICI)1099-0534(1998)10:4<197::AID-CMR1>3.0.CO;2-S

    Article  Google Scholar 

  • Sarkar R, Ahuja P, Vasos PR, Bodenhausen G (2008a) Measurement of slow diffusion coefficients of molecules with arbitrary scalar couplings via long-lived spin states. ChemPhysChem 9:2414–2419. doi:10.1002/cphc.200800476

    Google Scholar 

  • Sarkar R, Moskau D, Ferrage F, Vasos PR, Bodenhausen G (2008b) Single or triple gradients? J Magn Reson 193:110–118. doi:10.1016/j.jmr.2008.04.029

    Article  ADS  Google Scholar 

  • Schanda P, Brutscher B (2005) Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J Am Chem Soc 127:8014–8015. doi:10.1021/ja051306e

    Article  Google Scholar 

  • Schanda P, Van Melckebeke H, Brutscher B (2006) Speeding up three-dimensional protein NMR experiments to a few minutes. J Am Chem Soc 128:9042–9043. doi:10.1021/ja062025p

    Article  Google Scholar 

  • Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292. doi:10.1063/1.1695690

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Gilles Clodic and Gérard Bolbach are acknowledged for MALDI-TOF spectra acquisition and analysis. We thank Pau Bernado (IRB, Barcelona) and Damien Baigl (Ecole Normale Supérieure, Paris) for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Ferrage.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 489 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augustyniak, R., Ferrage, F., Paquin, R. et al. Methods to determine slow diffusion coefficients of biomolecules. Applications to Engrailed 2, a partially disordered protein. J Biomol NMR 50, 209–218 (2011). https://doi.org/10.1007/s10858-011-9510-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-011-9510-8

Keywords

Navigation