Skip to main content
Log in

Effects of amantadine on the dynamics of membrane-bound influenza A M2 transmembrane peptide studied by NMR relaxation

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The molecular motions of membrane proteins in liquid-crystalline lipid bilayers lie at the interface between motions in isotropic liquids and in solids. Specifically, membrane proteins can undergo whole-body uniaxial diffusion on the microsecond time scale. In this work, we investigate the 1H rotating-frame spin-lattice relaxation (T ) caused by the uniaxial diffusion of the influenza A M2 transmembrane peptide (M2TMP), which forms a tetrameric proton channel in lipid bilayers. This uniaxial diffusion was proved before by 2H, 15N and 13C NMR lineshapes of M2TMP in DLPC bilayers. When bound to an inhibitor, amantadine, the protein exhibits significantly narrower linewidths at physiological temperature. We now investigate the origin of this line narrowing through temperature-dependent 1H T relaxation times in the absence and presence of amantadine. Analysis of the temperature dependence indicates that amantadine decreases the correlation time of motion from 2.8 ± 0.9 μs for the apo peptide to 0.89 ± 0.41 μs for the bound peptide at 313 K. Thus the line narrowing of the bound peptide is due to better avoidance of the NMR time scale and suppression of intermediate time scale broadening. The faster diffusion of the bound peptide is due to the higher attempt rate of motion, suggesting that amantadine creates better-packed and more cohesive helical bundles. Analysis of the temperature dependence of \( { \ln }\left( {T_{1\rho }^{ - 1} } \right) \) indicates that the activation energy of motion increased from 14.0 ± 4.0 kJ/mol for the apo peptide to 23.3 ± 6.2 kJ/mol for the bound peptide. This higher activation energy indicates that excess amantadine outside the protein channel in the lipid bilayer increases the membrane viscosity. Thus, the protein-bound amantadine speeds up the diffusion of the helical bundles while the excess amantadine in the bilayer increases the membrane viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aisenbrey C, Bechinger B (2004) Investigations of polypeptide rotational diffusion in aligned membranes by 2H and 15N solid-state NMR spectroscopy. J Am Chem Soc 126:16676–16683

    Article  Google Scholar 

  • Batchelder LS, Sullivan CE, Jelinski LW, Torchia DA (1982) Characterization of leucine side-chain reorientation in collagen-fibrils by solid-state 2H NMR. Proc Natl Acad Sci USA 79:386–389

    Article  ADS  Google Scholar 

  • Bielecki A, Kolbert AC, de Groot HJM, Griffin RG, Levitt MH (1990) Frequency-switched Lee-Goldburg sequences in solids. Adv Magn Reson 14:111–124

    Google Scholar 

  • Bloom M, Evans E, Mouritsen OG (1991) Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys 24:293–397

    Article  Google Scholar 

  • Blume A, Rice DM, Wittebort RJ, Griffin RG (1982) Molecular dynamics and conformation in the gel and liquid-crystalline phases of phosphatidylethanolamine bilayers. Biochemistry 21:6220–6230

    Article  Google Scholar 

  • Cady SD, Hong M (2008) Amantadine-induced conformational and dynamical changes of the influenza M2 transmembrane proton channel. Proc Natl Acad Sci USA 105:1483–1488

    Article  ADS  Google Scholar 

  • Cady SD, Goodman C, Tatko CD, DeGrado WF, Hong M (2007) Determining the orientation of uniaxially rotating membrane proteins using unoriented samples: a 2H, 13C, AND 15N solid-state NMR investigation of the dynamics and orientation of a transmembrane helical bundle. J Am Chem Soc 129:5719–5729

    Article  Google Scholar 

  • Cady SD, Mishanina TV, Hong M (2009) Structure of amantadine-bound M2 transmembrane peptide of influenza A in lipid bilayers from magic-angle-spinning solid-state NMR: the role of Ser31 in amantadine binding. J Mol Biol 385:1127–1141

    Article  Google Scholar 

  • Carpino LA, Han GY (1972) The 9-fluorenylmethoxycarbonyl amino-protecting group. J Org Chem 37:3404–3409

    Article  Google Scholar 

  • Clore GM, Szabo A, Bax A, Kay LE, Driscoll PC, Gronenborn AM (1990) Deviations from the simple 2-parameter model-free approach to the interpretation of N-15 nuclear magnetic relaxation of proteins. J Am Chem Soc 112:4989–4991

    Article  Google Scholar 

  • Cohen MH, Turbill D (1959) Molecular transport in liquids and glasses. J Chem Phys 31:1164–1169

    Article  ADS  Google Scholar 

  • Cristian L, Lear JD, DeGrado WF (2003) Use of thiol-disulfide equilibria to measure the energetics of assembly of transmembrane helices in phospholipid bilayers. Proc Natl Acad Sci USA 100:14772–14777

    Article  ADS  Google Scholar 

  • deAzevedo ER, Hu WG, Bonagamba TJ, Schmidt-Rohr K (2000) Principles of centerband-only detection of exchange in solid-state nuclear magnetic resonance, and extension to four-time centerband-only detection of exchange. J Chem Phys 112:8988–9001

    Article  ADS  Google Scholar 

  • Douglass DC, Jones GP (1966) Nuclear magnetic relaxation of n-alkanes in rotating frame. J Chem Phys 45:956–963

    Article  ADS  Google Scholar 

  • Fares C, Qian J, Davis JH (2005) Magic angle spinning and static oriented sample NMR studies of the relaxation in the rotating frame of membrane peptides. J Chem Phys 122:194908

    Article  ADS  Google Scholar 

  • Galla HJ, Hartmann W, Theilen U, Sackmann E (1979) On two-dimensional passive random walk in lipid bilayers and fluid pathways in biomembranes. J Membr Biol 48:215–236

    Article  Google Scholar 

  • Gennis RB (1989) Biomembranes: molecular structure and function. Springer, New York

    Google Scholar 

  • Glaser RW, Sachse C, Durr UH, Wadhwani P, Ulrich AS (2004) Orientation of the antimicrobial peptide PGLa in lipid membranes determined from 19F-NMR dipolar couplings of 4-CF3-phenylglycine labels. J Magn Reson 168:153–163

    Article  ADS  Google Scholar 

  • Hagemeyer A, Schmidt-Rohr K, Spiess HW (1989) 2D NMR experiments for studying molecular order and dynamics in static and rotating solids. Adv Magn Reson 13:85–130

    Google Scholar 

  • Hay AJ, Wolstenholme AJ, Skehel JJ, Smith MH (1985) The molecular basis of the specific anti-influenza action of amantadine. EMBO J 4:3021–3024

    Google Scholar 

  • Hong M (2007) Structure, topology, and dynamics of membrane peptides and proteins from solid-state NMR spectroscopy. J Phys Chem B 111:10340–10351

    Article  Google Scholar 

  • Hong M, Doherty T (2006) Orientation determination of membrane-disruptive proteins using powder samples and rotational diffusion: a simple solid-state NMR approach. Chem Phys Lett 432:296–300

    Article  ADS  Google Scholar 

  • Hong M, Gross JD, Rienstra CM, Griffin RG, Kumashiro KK, Schmidt-Rohr K (1997) Coupling amplification in 2D MAS NMR and its application to torsion angle determination in peptides. J Magn Reson 129:85–92

    Article  ADS  Google Scholar 

  • Hong M, Yao XL, Jakes K, Huster D (2002) Investigation of molecular motions by Lee-Goldburg cross-polarization NMR spectroscopy. J Phys Chem B 106:7355–7364

    Article  Google Scholar 

  • Hu J, Asbury T, Achuthan S, Li C, Bertram R, Quine JR, Fu R, Cross TA (2007) Backbone structure of the amantadine-blocked trans-membrane domain M2 proton channel from influenza A virus. Biophys J 92:4335–4343

    Article  Google Scholar 

  • Huster D, Xiao LS, Hong M (2001) Solid-state NMR investigation of the dynamics of the soluble and membrane-bound colicin Ia channel-forming domain. Biochemistry 40:7662–7674

    Article  Google Scholar 

  • Ishima R, Torchia DA (2000) Protein dynamics from NMR. Nat Struct Biol 7:740–743

    Article  Google Scholar 

  • Ito T, Gorman OT, Kawaoka Y, Bean WJ, Webster RG (1991) Evolutionary analysis of the influenza A virus M gene with comparison of the M1 and M2 proteins. J Virol 65:5491–5498

    Google Scholar 

  • Jelinski LW, Sullivan CE, Torchia DA (1980) 2H NMR study of molecular motion in collagen fibrils. Nature 284:531–534

    Article  ADS  Google Scholar 

  • Kay LE (1998) Protein dynamics from NMR. Nat Struct Biol (suppl):513–517

  • Kinsey RA, Kintanar A, Tsai MD, Smith RL, Janes N, Oldfield E (1981) First observation of amino acid side chain dynamics in membrane proteins using high field deuterium nuclear magnetic resonance spectroscopy. J Biol Chem 256:4146–4149

    Google Scholar 

  • Kovacs FA, Cross TA (1997) Transmembrane four-helix bundle of influenza A M2 protein channel: structural implications from helix tilt and orientation. Biophys J 73:2511–2517

    Article  Google Scholar 

  • Lee K-C, Hu W, Cross TA (1993) 2H NMR determination of the global correlation time of the gramicidin channel in a lipid bilayer. Biophys J 65:1162–1167

    Article  Google Scholar 

  • Lewis BA, Harbison GS, Herzfeld J, Griffin RG (1985) NMR structural analysis of a membrane protein: bacteriorhodopsin peptide backbone orientation and motion. Biochemistry 24:4671–4679

    Article  Google Scholar 

  • Li C, Qin H, Gao FP, Cross TA (2007) Solid-state NMR characterization of conformational plasticity within the transmembrane domain of the influenza A M2 proton channel. Biochim Biophys Acta 1768:3162–3170

    Article  Google Scholar 

  • Li C, Yi M, Hu J, Zhou HX, Cross TA (2008) Solid-state NMR and MD simulations of the antiviral drug amantadine solubilized in DMPC bilayers. Biophys J 94:1295–1302

    Article  Google Scholar 

  • Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104:4546–4559

    Article  Google Scholar 

  • Luo W, Hong M (2006) Determination of the oligomeric number and intermolecular distances of membrane protein assemblies by anisotropic (1)H-driven spin diffusion NMR spectroscopy. J Am Chem Soc 128:7242–7251

    Article  Google Scholar 

  • Luo W, Cady SD, Hong M (2009) Immobilization of the influenza A M2 transmembrane peptide in virus-envelope mimetic lipid membranes: a solid-state NMR investigation. Biochemistry 48:6361–6368

    Article  Google Scholar 

  • Macdonald PM, Seelig J (1988) Dynamic properties of gramicidin A in phospholipid membranes. Biochemistry 27:2357–2364

    Article  Google Scholar 

  • Mandel AM, Akke M, Palmer AG (1996) Dynamics of ribonuclease H: temperature dependence of motions on multiple time scales. Biochemistry 35:16009–16023

    Article  Google Scholar 

  • Mehring M (1983) Principles of high resolution NMR in solids. Springer, Berlin

    Google Scholar 

  • Munowitz M, Aue WP, Griffin RG (1982) Two-dimensional separation of dipolar and scaled isotropic chemical shift interactions in magic angle NMR spectra. J Chem Phys 77:1686–1689

    Article  ADS  Google Scholar 

  • Opella SJ (1986) Protein dynamics by solid state nuclear magnetic resonance. Methods Enzymol 131:327–361

    Article  Google Scholar 

  • Palmer AG, Williams J, McDermott A (1996) Nuclear magnetic resonance studies of biopolymer dynamics. J Phys Chem 100:13293–13310

    Article  Google Scholar 

  • Palmer AG, Kroenke CD, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 339:204–238

    Article  Google Scholar 

  • Park SH, Mrse AA, Nevzorov AA, De Angelis AA, Opella SJ (2006) Rotational diffusion of membrane proteins in aligned phospholipid bilayers by solid-state NMR spectroscopy. J Magn Reson 178:162–165

    Article  ADS  Google Scholar 

  • Pauls KP, MacKay AL, Söderman O, Bloom M, Tanjea AK, Hodges RS (1985) Dynamic properties of the backbone of an integral membrane polypeptide measured by 2H-NMR. Eur Biophys J 12:1–11

    Article  Google Scholar 

  • Pinto LH, Lamb RA (2007) Controlling influenza virus replication by inhibiting its proton flow. Mol Biosyst 3:18–23

    Article  Google Scholar 

  • Pinto LH, Holsinger LJ, Lamb RA (1992) Influenza virus M2 protein has ion channel activity. Cell 69:517–528

    Article  Google Scholar 

  • Prosser RS, Davis JH, Mayer C, Weisz K, Kothe G (1992) Deuterium NMR relaxation studies of peptide-lipid interactions. Biochemistry 31:9355–9363

    Article  Google Scholar 

  • Reuther G, Tan KT, Vogel A, Nowak C, Arnold K, Kuhlmann J, Waldmann H, Huster D (2006) The lipidated membrane anchor of full length N-Ras protein shows an extensive dynamics as revealed by solid-state NMR spectroscopy. J Am Chem Soc 128:13840–13846

    Article  Google Scholar 

  • Rothwell WP, Waugh JS (1981) Transverse relaxation of dipolar coupled spin systems under Rf-irradiation—detecting motions in solids. J Chem Phys 74:2721–2732

    Article  ADS  Google Scholar 

  • Saffman PG, Delbruck M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci USA 72:3111–3113

    Article  ADS  Google Scholar 

  • Sakaguchi T, Tu Q, Pinto LH, Lamb RA (1997) The active oligomeric state of the minimalistic influenza virus M2 ion channel is a tetramer. Proc Natl Acad Sci USA 94:5000–5005

    Article  ADS  Google Scholar 

  • Schaefer J, Stejskal EO, Buchdahl R (1977) Magic-angle C-13 NMR analysis of motion in solid glassy polymers. Macromolecules 10:384–405

    Article  ADS  Google Scholar 

  • Schaefer J, Mckay RA, Stejskal EO (1983) Dipolar rotational spin-echo 13C NMR of polymers. J Magn Reson 52:123–129

    Google Scholar 

  • Schaefer J, Stejskal EO, Mckay RA (1984) Phenylalanine ring dynamics by solid-state 13C NMR. J Magn Reson 57:85–92

    Google Scholar 

  • Schaefer D, Spiess HW, Suter UW, Fleming WW (1990) 2D solid-state NMR studies of ultraslow chain motion: glass transition in aPP versus helical jumps in iPP. Macromolecules 23:3431–3439

    Article  ADS  Google Scholar 

  • Schmidt C, Blumich B, Spiess HW (1988) Deuteron two-dimensional exchange NMR in solids. J Magn Reson 79:269–290

    Google Scholar 

  • Schmidt-Rohr K, Clauss J, Spiess HW (1992) Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-separation NMR spectroscopy. Macromolecules 25:3273–3277

    Article  ADS  Google Scholar 

  • Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451:591–595

    Article  ADS  Google Scholar 

  • Shaw WJ, Long JR, Campbell AA, Stayton PS, Drobny GP (2000) A solid state NMR study of dynamics in a hydrated salivary peptide adsorbed to hydroxyapatite. J Am Chem Soc 122:7118–7119

    Article  Google Scholar 

  • Smith RL, Oldfield E (1984) Dynamic structure of membranes by deuterium NMR. Science 225:280–288

    Article  ADS  Google Scholar 

  • Stouffer AL, Acharya R, Salom D, Levine AS, Di Costanzo L, Soto CS, Tereshko V, Nanda V, Stayrook S, DeGrado WF (2008) Structural basis for the function and inhibition of an influenza virus proton channel. Nature 451:596–599

    Article  ADS  Google Scholar 

  • Subczynski WK, Wojas J, Pezeshk V, Pezeshk A (1998) Partitioning and localization of spin-labeled amantadine in lipid bilayers: an EPR study. J Pharm Sci 87:1249–1254

    Article  Google Scholar 

  • Tian F, Song Z, Cross TA (1998) Orientational constraints derived from hydrated powder samples by two-dimensional PISEMA. J Magn Reson 135:227–231

    Article  ADS  Google Scholar 

  • Traikia M, Warschawski DE, Recouvreur M, Cartaud J, Devaux PF (2000) Formation of unilamellar vesicles by repetitive freeze-thaw cycles: characterization by electron microscopy and P-31-nuclear magnetic resonance. Eur Biophys J 29:184–195

    Article  Google Scholar 

  • van Rossum BJ, de Groot CP, Ladizhansky V, Vega S, de Groot HJM (2000) A method for measuring heteronuclear (H-1-C-13) distances in high speed MAS NMR. J Am Chem Soc 122:3465–3472

    Article  Google Scholar 

  • Wang C, Takeuchi K, Pinto LH, Lamb RA (1993) Ion channel activity of influenza A virus M2 protein: characterization of the amantadine block. J Virol 67:5585–5594

    Google Scholar 

  • Wang J, Schnell JR, Chou JJ (2004) Amantadine partition and localization in phospholipid membrane: a solution NMR study. Biochem Biophys Res Commun 324:212–217

    Article  Google Scholar 

  • Wang J, Cady SD, Balannik V, Pinto LH, DeGrado WF, Hong M (2009) Discovery of spiro-piperidine inhibitors and their modulation of the dynamics of the M2 proton channel from influenza A virus. J Am Chem Soc 131:8066–8076

    Article  Google Scholar 

  • Williams JC, McDermott AE (1995) Dynamics of the flexible loop of triosephosphate isomerase: the loop motion is not ligand gated. Biochemistry 34:8309–8319

    Article  Google Scholar 

  • Yamaguchi S, Huster D, Waring A, Lehrer RI, Tack BF, Kearney W, Hong M (2001) Orientation and dynamics of an antimicrobial peptide in the lipid bilayer by solid-state NMR. Biophys J 81:2203–2214

    Article  Google Scholar 

  • Yang Z, Liivak O, Seidel A, LaVerde G, Zax DB, Jelinski LW (2000) Supercontraction and backbone dynamics in spider silk: 13C and 2H NMR studies. J Am Chem Soc 122:9019–9025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Hong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 297 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cady, S.D., Hong, M. Effects of amantadine on the dynamics of membrane-bound influenza A M2 transmembrane peptide studied by NMR relaxation. J Biomol NMR 45, 185–196 (2009). https://doi.org/10.1007/s10858-009-9352-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-009-9352-9

Keywords

Navigation