Skip to main content
Log in

Probabilistic Identification of Spin Systems and their Assignments including Coil–Helix Inference as Output (PISTACHIO)

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We present a novel automated strategy (PISTACHIO) for the probabilistic assignment of backbone and sidechain chemical shifts in proteins. The algorithm uses peak lists derived from various NMR experiments as input and provides as output ranked lists of assignments for all signals recognized in the input data as constituting spin systems. PISTACHIO was evaluate00000000d by comparing its performance with raw peak-picked data from 15 proteins ranging from 54 to 300 residues; the results were compared with those achieved by experts analyzing the same datasets by hand. As scored against the best available independent assignments for these proteins, the first-ranked PISTACHIO assignments were 80–100% correct for backbone signals and 75–95% correct for sidechain signals. The independent assignments benefited, in a number of cases, from structural data (e.g. from NOESY spectra) that were unavailable to PISTACHIO. Any number of datasets in any combination can serve as input. Thus PISTACHIO can be used as datasets are collected to ascertain the current extent of secure assignments, to identify residues with low assignment probability, and to suggest the types of additional data needed to remove ambiguities. The current implementation of PISTACHIO, which is available from a server on the Internet, supports input data from 15 standard double- and triple-resonance experiments. The software can readily accommodate additional types of experiments, including data from selectively labeled samples. The assignment probabilities can be carried forward and refined in subsequent steps leading to a structure. The performance of PISTACHIO showed no direct dependence on protein size, but correlated instead with data quality (completeness and signal-to-noise). PISTACHIO represents one component of a comprehensive probabilistic approach we are developing for the collection and analysis of protein NMR data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Andrec R.M. Levy (2002) J. Biomol. NMR 23 263–270 Occurrence Handle10.1023/A:1020236105735 Occurrence Handle12398347

    Article  PubMed  Google Scholar 

  • H.S. Atreya S.C. Sahu K.V. Chary G. Govil (2000) J. Biomol. NMR 17 125–136 Occurrence Handle10.1023/A:1008315111278 Occurrence Handle10921777

    Article  PubMed  Google Scholar 

  • C. Bailey-Kellogg A. Widge J.J. Kelley M.J. Berardi J.H. Bushweller B.R. Donald (2000) J. Comput. Biol 7 537–558 Occurrence Handle10.1089/106652700750050934 Occurrence Handle11108478

    Article  PubMed  Google Scholar 

  • C. Bartels P. Güntert M. Billeter K. Wüthrich (1997) J. Comput. Chem 18 139–149 Occurrence Handle10.1002/(SICI)1096-987X(19970115)18:1<139::AID-JCC13>3.0.CO;2-H

    Article  Google Scholar 

  • C. Bartels T.-H. Xia M. Billeter P. Güntert K. Wüthrich (1995) J. Biomol. NMR 5 1–10 Occurrence Handle10.1007/BF00417486 Occurrence Handle7881269

    Article  PubMed  Google Scholar 

  • E.B. Baum D. Boneh C. Garrett (2001) Evol. Comput 9 93–124 Occurrence Handle10.1162/10636560151075130 Occurrence Handle11290286

    Article  PubMed  Google Scholar 

  • A. Bax G.M. Clore A.M. Gronenborn (1990a) J. Magn. Reson 88 425–431

    Google Scholar 

  • A. Bax G.M. Clore P.C. Driscoll A.M. Gronenborn M. Ikura L.E. Kay (1990b) J. Magn. Reson 87 620–627

    Google Scholar 

  • M. Billeter W. Braun K. Wüthrich (1982) J. Mol. Biol 155 21–346 Occurrence Handle10.1016/0022-2836(82)90008-0

    Article  Google Scholar 

  • Buchler, N.E.G., Zuiderweg, E.R.P., Wang, H. and Goldstein, R.A. (1997) Biophys. J., 72, WP447

  • R.E. Burkard U. Fincke (1985) Discrete Appl. Math 12 21–29 Occurrence Handle10.1016/0166-218X(85)90037-X

    Article  Google Scholar 

  • B. Celda G.T. Montelione (1993) J. Magn. Reson. Series B 101 189–193 Occurrence Handle10.1006/jmrb.1993.1030

    Article  Google Scholar 

  • Z.Z. Chen T. Jiang G. Lin J. Wen D. Xu J. Xu Y. Xu (2003) Theor. Comput. Sci 299 1–3 Occurrence Handle10.1016/S0304-3975(02)00086-5

    Article  Google Scholar 

  • B.E. Coggins P. Zhou (2003) J. Biomol. NMR 26 93–111 Occurrence Handle10.1023/A:1023589029301 Occurrence Handle12766406

    Article  PubMed  Google Scholar 

  • L. Davis (1987) Genetic Algorithms and Simulated Annealing Pitman London

    Google Scholar 

  • L. Davis (1991) Handbook of Genetic Algorithms Van Nostrand Reinhold New York

    Google Scholar 

  • C. Eccles P. Güntert M. Billeter K. Wüthrich (1991) J. Biomol. NMR 1 111–130 Occurrence Handle10.1007/BF01877224 Occurrence Handle1726780

    Article  PubMed  Google Scholar 

  • J. Edmonds (1965) J. Res. Nat. Bur. Standards Sec. B 69 125–130

    Google Scholar 

  • Eghbalnia, H., Wang, L., Bahrami, A., Assadi, A. and Markley, J.L. (2005) J. Biomol. NMR (in press)

  • S.W. Fesik H.L. Eaton E.T. Olejniczak R.T. Gampe (1990) J. Am. Chem. Soc 112 5370–5371

    Google Scholar 

  • E.C. Geerestein-Ujah M. Mariani H. Vis R. Boelens R. Kaptein (1996) Biopolymers 39 691–707 Occurrence Handle10.1002/(SICI)1097-0282(199611)39:5<691::AID-BIP8>3.0.CO;2-R Occurrence Handle8875823

    Article  PubMed  Google Scholar 

  • D. Goldberg (1989) Genetic Algorithms in Optimization, Search and Machine Learning Addison Wesley New York

    Google Scholar 

  • Gonzalez, T.F. (1996) Multi-message multicasting: complexity and approximation. Proceeding of 30th Hawaii International Conference on System Sciences HICSS-30

  • W. Gronwald H.R. Kalbitzer (2004) Prog. Nuc. Magn. Reson. Spectr 44 33–96 Occurrence Handle10.1016/j.pnmrs.2003.12.002

    Article  Google Scholar 

  • W. Gronwald L. Willard T. Jellard R.E. Boyko K. Rajarathnam D.S. Wishart F.D. Sonnichsen B.D. Sykes (1998) J. Biomol. NMR 12 395–405 Occurrence Handle10.1023/A:1008321629308 Occurrence Handle9835047

    Article  PubMed  Google Scholar 

  • T.K. Hitchens J.A. Lukin Y. Zhan S.A. McCallum G.S. Rule (2003) J. Biomol. NMR 25 1–9 Occurrence Handle10.1023/A:1021975923026 Occurrence Handle12566995

    Article  PubMed  Google Scholar 

  • J.H. Holland (1975) Adaptation in Natural and Artificial Systems an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence University of Michigan Press Ann Arbor

    Google Scholar 

  • J.H. Holland (1992) Adaptation in Natural and Artificial Systems an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence MIT Press Cambridge, Mass

    Google Scholar 

  • S.G. Hyberts G. Wagner (2003) J. Biomol. NMR 26 335–344 Occurrence Handle10.1023/A:1024078926886 Occurrence Handle12815260

    Article  PubMed  Google Scholar 

  • M. Ikura L.E. Kay A. Bax (1990) Biochemistry 29 4659–4667 Occurrence Handle10.1021/bi00471a022 Occurrence Handle2372549

    Article  PubMed  Google Scholar 

  • Y.S. Jung M. Zweckstetter (2004) J. Biomol. NMR 30 11–23 Occurrence Handle10.1023/B:JNMR.0000042954.99056.ad Occurrence Handle15452431

    Article  PubMed  Google Scholar 

  • R. Koradi M. Billeter M. Engeli P. Güntert K. Wüthrich (1998) J. Magn. Reson 135 288–297 Occurrence Handle10.1006/jmre.1998.1570 Occurrence Handle9878459

    Article  PubMed  Google Scholar 

  • J.R. Koza (1996) Genetic Programming: Proceedings of the First Annual Conference, 1996 MIT Press Cambridge Mass

    Google Scholar 

  • M.F. Leopold J.L. Urbauer A.J. Wand (1994) Mol. Biotech 2 61–93

    Google Scholar 

  • L.D. Landau E.M. Lifshitz. (1980) Statistical Physics (Part 1) EditionNumber3 Pergamon Press Oxford New York

    Google Scholar 

  • M. Leutner R.M. Gschwind J. Liermann C. Schwarz G. Gemmecker H. Kessler (1998) J. Biomol. NMR 11 31–43 Occurrence Handle10.1023/A:1008298226961 Occurrence Handle9615996

    Article  PubMed  Google Scholar 

  • K.B. Li B.C. Sanctuary (1997) J. Chem. Inform. Computer Sci 37 467–477 Occurrence Handle10.1021/ci960372k

    Article  Google Scholar 

  • Y. Lin G. Wagner (1999) J. Biomol. NMR 15 227–239 Occurrence Handle10.1023/A:1008343915382 Occurrence Handle10677826

    Article  PubMed  Google Scholar 

  • J.A. Lukin A.P. Gove S.N. Talukdar C. Ho (1997) J. Biomol. NMR 9 51–166 Occurrence Handle10.1023/A:1018602220061

    Article  Google Scholar 

  • D. Malmodin C.H. Papavoine M. Billeter (2003) J. Biomol. NMR 27 69–79 Occurrence Handle10.1023/A:1024765212223 Occurrence Handle12878842

    Article  PubMed  Google Scholar 

  • Z. Michalewicz D.B. Fogel (2000) How to Solve it: Modern Heuristics Springer Berlin

    Google Scholar 

  • H.N. Moseley G.T. Montelione (1999) Curr. Opin. Struct. Biol 9 635–642 Occurrence Handle10.1016/S0959-440X(99)00019-6 Occurrence Handle10508776

    Article  PubMed  Google Scholar 

  • H.N. Moseley D. Monleon G.T. Montelione (2001) NMR Biol. Macromol., Pt B 339 91–108

    Google Scholar 

  • S.J. Nelson D.M. Schneider A.J. Wand (1991) Biophys. J 59 1113–1122 Occurrence Handle1868156

    PubMed  Google Scholar 

  • Nissen, V. and Propach, J. (1998) Parallel Problem Solving from Nature, Vol. 5, pp. 159–168

  • Olson, J.B., Jr. (1995) Ph.D. thesis, University of Wisconsin-Madison

  • J.B. Olson SuffixJr. J.L. Markley (1994) J. Biomol. NMR 4 385–410 Occurrence Handle10.1007/BF00179348 Occurrence Handle8019143

    Article  PubMed  Google Scholar 

  • P. Permi A. Annila (2001) J. Biomol. NMR 20 127–133 Occurrence Handle10.1023/A:1011208803036 Occurrence Handle11495244

    Article  PubMed  Google Scholar 

  • S. Rana L.D. Whitley R. Cogswell (1996) Lecture Notes in Computer Science (LNCS) 1141 196–207

    Google Scholar 

  • P.D. Stroud (2001) IEEE Trans. Evol. Comput 5 66–77 Occurrence Handle10.1109/4235.910466

    Article  Google Scholar 

  • M. Talagrand (1995) Publications Mathématiques de l’I. H. E. S 81 73–205

    Google Scholar 

  • W.T. Tutte (1947) J. London Math. Soc 22 107–11

    Google Scholar 

  • Wang, L., Eghbalnia, H., Bahrami, A. and Markley, J.L. (2005) J. Biomol. NMR (in press)

  • G. Wider K.H. Lee K. Wüthrich (1982) J. Mol. Biol 155 367–388 Occurrence Handle10.1016/0022-2836(82)90010-9 Occurrence Handle7077677

    Article  PubMed  Google Scholar 

  • D.H. Wolpert W.G. Macready (1997) IEEE Trans. Evol. Comput 1 67–82 Occurrence Handle10.1109/4235.585893

    Article  Google Scholar 

  • J. Xu S.K. Straus B.C. Sanctuary L. Trimble (1993) J. Chem. Inf. Comput. Sci 33 668–682 Occurrence Handle10.1021/ci00015a004 Occurrence Handle7504680

    Article  PubMed  Google Scholar 

  • D. Zimmerman C. Kulikowski L.Z. Wang B. Lyons G.T. Montelione (1994) J. Biomol. NMR 4 241–256 Occurrence Handle10.1007/BF00175251 Occurrence Handle8019136

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid R. Eghbalnia.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eghbalnia, H.R., Bahrami, A., Wang, L. et al. Probabilistic Identification of Spin Systems and their Assignments including Coil–Helix Inference as Output (PISTACHIO). J Biomol NMR 32, 219–233 (2005). https://doi.org/10.1007/s10858-005-7944-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-005-7944-6

Keywords

Navigation