Skip to main content

Advertisement

Log in

Synthesis of high purity hydroxyapatite nanopowder via sol–gel combustion process

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A polymeric sol–gel combustion method has been used to synthesize nanocrystalline hydroxyapatite (HA) powder from calcium nitrate and triethyl phosphate with the addition of NH4OH. The sol–gel combustion process generates phase-pure nanocrystalline HA powder, as characterized using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Sintering of the HA powder compact at 1200°C for 2 h leads to a 93% theoretical dense ceramic body. This method offers an easy route for the preparation of phase-pure nanocrystalline HA powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Jarcho, C.H. Bolen, M.B. Thomas, J. Bobick, J.F. Kay, R.H. Doremus, Hydroxylapatite synthesis and characterization in dense polycrystalline form. J. Mater. Sci. 11, 2027–2035 (1976). doi:10.1007/BF02403350

    Article  ADS  CAS  Google Scholar 

  2. T. Ishikawa, H. Tanaka, A. Yasukawa, K. Kandori, Modification of calcium hydroxyapatite using ethyl phosphates. J. Mater. Chem. 5, 1963–1967 (1995). doi:10.1039/jm9950501963

    Article  CAS  Google Scholar 

  3. K. Kandori, A. Yasukawa, T. Ishikawa, Preparation and characterization of spherical calcium hydroxyapatite. Chem. Mater. 7, 26–32 (1995). doi:10.1021/cm00049a007

    Article  CAS  Google Scholar 

  4. J. Wang, L. Shaw, Morphology-enhanced low-temperature sintering of nanocrystalline hydroxyapatite. Adv. Mater. 19, 2364–2369 (2007). doi:10.1002/adma.200602333

    Article  CAS  Google Scholar 

  5. T. Hattori, Y. Lwadate, Hydrothermal preparation of calcium hydroxyapatite powders. J. Am. Ceram. Soc. 73, 1803–1805 (1990). doi:10.1111/j.1151-2916.1990.tb09841.x

    Article  CAS  Google Scholar 

  6. J. Liu, X. Ye, H. Wang, M. Zhu, B. Wang, H. Yan, The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceram. Int. 29, 629–633 (2003). doi:10.1016/S0272-8842(02)00210-9

    Article  CAS  Google Scholar 

  7. Y. Fujishiro, H. Yabuki, K. Kawamura, T. Sato, A. Okuwaki, Preparation of needle-like hydroxyapatite by homogeneous precipitation under hydrothermal conditions. J. Chem. Technol. Biotechnol. 57(4), 349–353 (1993)

    PubMed  CAS  Google Scholar 

  8. M.-F. Hsieh, L.-H. Perng, T.-S. Chin, H.-G. Perng, Phase purity of sol–gel-derived hydroxyapatite ceramic. Biomaterials 22, 2601–2607 (2001). doi:10.1016/S0142-9612(00)00448-8

    Article  PubMed  CAS  Google Scholar 

  9. H.K. Varma, S.N. Kalkurab, R. Sivakumaf, Polymeric precursor route for the preparation of calcium phosphate compounds. Ceram. Int. 24, 467–470 (1998). doi:10.1016/S0272-8842(97)00038-2

    Article  CAS  Google Scholar 

  10. Y. Han, S. Li, X. Wang, X. Chen, Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol–gel combustion method. Mater. Res. Bull. 39, 25–32 (2004). doi:10.1016/j.materresbull.2003.09.022

    Article  CAS  Google Scholar 

  11. W. Weng, J.L. Baptista, Synthesis of calcium phosphates by PO(OH)x(OBut)3−x and CaO2C2H4. J. Sol–Gel. Sci. Technol. (Paris) 8, 645–649 (1997)

    CAS  Google Scholar 

  12. D.-M. Liu, T. Troczynski, W.J. Tseng, Aging effect on the phase evolution of water-based sol–gel hydroxyapatite. Biomaterials 23, 1227–1236 (2002). doi:10.1016/S0142-9612(01)00242-3

    Article  PubMed  CAS  Google Scholar 

  13. H.-W. Kim, H.-E. Kim, J.C. Knowles, Improvement of hydroxyapatite sol–gel coating on titanium with ammonium hydroxide addition. J. Am. Ceram. Soc. 88, 154–159 (2005)

    Article  CAS  Google Scholar 

  14. Y. Li, W. Weng, K.C. Tam, Novel highly biodegradable biphasic tricalcium phosphates composed of α-tricalcium phosphate and β-tricalcium phosphate. Acta Biomater. 3, 251–254 (2007). doi:10.1016/j.actbio.2006.07.003

    Article  PubMed  CAS  Google Scholar 

  15. H.P. Klug, L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials (Wiley, London, 1954)

    Google Scholar 

  16. L. Shaw, J. Villegas, H. Luo, D. Miracle, Thermal stability of nanostructured Al93Fe3Ti2Cr2 alloys prepared via mechanical alloying. Acta Mater. 51, 2647–2663 (2003). doi:10.1016/S1359-6454(03)00075-2

    Article  CAS  Google Scholar 

  17. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938). doi:10.1021/ja01269a023

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon L. Shaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Shaw, L.L. Synthesis of high purity hydroxyapatite nanopowder via sol–gel combustion process. J Mater Sci: Mater Med 20, 1223–1227 (2009). https://doi.org/10.1007/s10856-008-3685-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3685-x

Keywords

Navigation