Skip to main content
Log in

The influence of surface mineral and osteopontin on the formation and function of murine bone marrow-derived osteoclasts

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The phosphorylated glycoprotein osteopontin (OPN) is involved in the regulation of biomineralization under normal and pathological conditions. Its actions include inhibiting apatite crystal growth and promoting the formation and function of mineral resorbing cells, including osteoclasts (OCL). The purpose of this study was to develop stable apatitic mineral surfaces and determine their influence on OCL formation and mineral resorption from bone marrow macrophages derived from OPN wild-type (OPN+/+) and OPN deficient (OPN−/−) mice. We demonstrated that these mineral coatings were stable and supported bone marrow-derived macrophage differentiation to OCL under our culture conditions. Macrophages harvested from OPN−/− mice had a greater capacity to form OCL than macrophages from OPN+/+ mice when allowed to differentiate on tissue culture plastic. In contrast, when allowed to differentiate on a mineral surface, no difference in OCL formation was observed. Interestingly, OPN+/+ OCL were more efficient at mineral dissolution than OPN−/− OCL, and this difference was observed regardless of differentiating surface. Our results suggest that mineralized substrates as well as ability to synthesize OPN both control OCL function in our model system. The exact nature of these effects may be dependent on variables related to mineral substrate presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Weiner, L. Addadi, Science 298, 375 (2002)

    Article  CAS  Google Scholar 

  2. A.L. Boskey, Calcif. Tissue Int. 72, 533 (2003)

    Article  CAS  Google Scholar 

  3. G.K. Hunter, P.V. Hauschka, A.R. Poole, L.C. Rosenberg, H.A. Goldberg, Biochem. J. 317, 59 (1996)

    CAS  Google Scholar 

  4. L. Addadi, S. Raz, S. Weiner, Adv. Mater. 15, 959 (2003)

    Article  CAS  Google Scholar 

  5. J.L. Kirschvink, J.W. Hagadorn, in The Biomineralization of Nano- and Micro-structures, ed. by E. Bauerlein (Wiley-VCH Verlag GmbH, Weinheim, Germany, 2000), p. 139

    Google Scholar 

  6. B.A. Gotliv, L. Addadi, S. Weiner, Chembiochem 4, 522 (2003)

    Article  CAS  Google Scholar 

  7. J. Moradian-Oldak, F. Frolow, L. Addadi, S. Weiner, Proc. R. Soc. Lond., B, Biol. Sci. 247, 47 (1992)

    Article  CAS  Google Scholar 

  8. J.G. Steele, B.A. Dalton, G. Johnson, P.A. Underwood, J. Biomed. Mater. Res. 27, 927 (1993)

    Article  CAS  Google Scholar 

  9. C.M. Giachelli, S. Steitz, Matrix Biol. 19, 615 (2000)

    Article  CAS  Google Scholar 

  10. L. Addadi, S. Weiner, M. Geva, Z. Kardiol. 90, 92 (2001)

    Article  Google Scholar 

  11. E. Salih, J. Wang, J. Mah, R. Fluckiger, Biochem. J. 364, 465 (2002)

    Article  CAS  Google Scholar 

  12. E. Salih, R. Fluckiger, J. Biol. Chem. 279, 19808 (2004)

    Article  CAS  Google Scholar 

  13. M.Y. Speer, C.M. Giachelli, Cardiovasc. Pathol. 13, 63 (2004)

    Article  CAS  Google Scholar 

  14. R. Ohri, E. Tung, R. Rajachar, C.M. Giachelli, Calcif. Tissue Int. 11, 11 (2005)

    Google Scholar 

  15. L. Liaw, V. Lindner, S.M. Schwartz, A.F. Chambers, C.M. Giachelli, Circ. Res. 77, 665 (1995)

    CAS  Google Scholar 

  16. M. Chellaiah, K. Hruska, Mol. Biol. Cell. 7, 743 (1996)

    CAS  Google Scholar 

  17. S.A. Steitz, M.Y. Speer, M.D. Mckee, L. Liaw, M. Almeida, H. Yang, C.M. Giachelli, Am. J. Pathol. 161, 2035 (2002)

    CAS  Google Scholar 

  18. M.A. Chellaiah, N. Kizer, R. Biswas, U. Alvarez, J. Strauss-Schoenberger, L. Rifas, S.R. Rittling, D.T. Denhardt, K.A. Hruska, Mol. Biol. Cell. 14, 173 (2003)

    Article  CAS  Google Scholar 

  19. K.A. Hruska, F. Rolnick, M. Huskey, U. Alvarez, D. Cheresh, Endocrinology 136, 2984 (1995)

    Article  CAS  Google Scholar 

  20. S.R. Rittling, H.N. Matsumoto, M.D. Mckee, A. Nanci, X.R. An, K.E. Novick, A.J. Kowalski, M. Noda, D.T. Denhardt, J. Bone Miner. Res. 13, 1101 (1998)

    Article  CAS  Google Scholar 

  21. C.J. Aitken, J.M. Hodge, G.C. Nicholson, J. Cell Biochem. 93, 896 (2004)

    Article  CAS  Google Scholar 

  22. A.M. Pietak, M. Sayer, J.W. Reid, A. Pietak, D. Dunfield, T.J. Smith, Biomaterials 27, 3 (2006)

    Article  CAS  Google Scholar 

  23. H.T. Zreiqat. T.N. Crotti, Biomaterials 24, 337 (2003)

    Article  Google Scholar 

  24. A. Sabokbar, R. Pandey, J. Mater. Sci. Mater. Med. 12, 659 (2001)

    Article  CAS  Google Scholar 

  25. L. Liaw, D.E. Birk, C.B. Ballas, J.S. Whitsitt, J.M. Davidson, B.L. Hogan, J. Clin. Invest. 101, 1468 (1998)

    CAS  Google Scholar 

  26. N. Takahashi, N. Udagawa, S. Tanaka, T. Suda, Methods Mol. Med. 80, 129 (2003)

    Google Scholar 

  27. I. Nakamura, N. Takahashi, T. Sasaki, E. Jimi, T. Kurokawa, T. Suda, J. Bone Miner. Res. 11, 1873 (1996)

    Article  CAS  Google Scholar 

  28. B. Ratner D. Castner, in Surface Analysis-Techniques and Applications, ed. by J. Vickerman N. Reed (Wiley, Chichester, UK, 1992)

    Google Scholar 

  29. N. Udagawa, N. Takahashi, T. Akatsu, H. Tanaka, T. Sasaki, T. Nishihara, T. Koga, T.J. Martin, T. Suda, Proc. Natl Acad. Sci. USA 87, 7260 (1990)

    Article  CAS  Google Scholar 

  30. H. Yoshitake, S.R. Rittling, D.T. Denhardt, M. Noda, F.P. Ross, J. Chappel, J.I. Alvarez, D. Sander, W.T. Butler, M.C. Farach-Carson, K.A. Mintz, P.G. Robey, S.L. Teitelbaum, D.A. Cheresh, A. Miyauchi, J. Alvarez, E.M. Greenfield, A. Teti, M. Grano, S. Colucci, A. Zambonin-Zallone, D. Cheresh, et al., Proc. Natl Acad. Sci. USA 96, 8156 (1999)

    Article  CAS  Google Scholar 

  31. H. Ihara, D.T. Denhardt, K. Furuya, T. Yamashita, Y. Muguruma, K. Tsuji, K.A. Hruska, K. Higashio, S. Enomoto, A. Nifuji, S.R. Rittling, M. Noda, J. Biol. Chem. 276, 13065 (2001)

    Article  CAS  Google Scholar 

  32. M. Ishijima, K. Tsuji, S.R. Rittling, T. Yamashita, H. Kurosawa, D.T. Denhardt, A. Nifuji, M. Noda, J. Bone Miner. Res. 17, 661 (2002)

    Article  Google Scholar 

  33. S.B. Rodan, G.A. Rodan, J. Endocrinol. 154, S47 (1997)

  34. F.P. Ross, J. Chappel, J.I. Alvarez, D. Sander, W.T. Butler, M.C. Farach-Carson, K.A. Mintz, P.G. Robey, S.L. Teitelbaum, D.A. Cheresh, A. Miyauchi, J. Alvarez, E.M. Greenfield, A. Teti, M. Grano, S. Colucci, A. Zambonin-Zallone, D. Cheresh, et al., J. Biol. Chem. 268, 9901 (1993)

    CAS  Google Scholar 

  35. M.M. Cooke, G.M. Mccarthy, J.D. Sallis, M.P. Morgan, Breast Cancer Res. Treat. 79, 253 (2003)

    Article  CAS  Google Scholar 

  36. B.M. Whited, D. Skrtic, B.J. Love, A.S. Goldstein, J. Biomed. Mater. Res. A. 76, 596 (2006)

    Google Scholar 

  37. N.J. Hallab, J.J. Jacobs, J.L. Katz, in Biomaterials Science: An Introduction to Materials in Medicine, ed. by B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons (Academic Press, 2004) p. 526

Download references

Acknowledgments

This work was supported by NIH HL62329 and NIH training grant HL07828-06. The authors would like to thank Lara Gamble for performing XPS analysis on the mineral plates at NESAC/BIO, supported by NIBIB grant EB-002027; and the lab of Dr. Stephen M. Schwartz at the University of Washington for protocols regarding macrophage isolation and L929 fibroblast cells required for preparation of supplemented media. Electron microscopy work was performed at the University of Washington Nanotech User Facility (NTUF), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia M. Giachelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajachar, R.M., Truong, A.Q. & Giachelli, C.M. The influence of surface mineral and osteopontin on the formation and function of murine bone marrow-derived osteoclasts. J Mater Sci: Mater Med 19, 3279–3285 (2008). https://doi.org/10.1007/s10856-008-3455-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3455-9

Keywords

Navigation