Skip to main content

Advertisement

Log in

Effect of mineral content on the nanoindentation properties and nanoscale deformation mechanisms of bovine tibial cortical bone

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this paper, a multitechnique experimental and numerical modeling methodology was used to show that mineral content had a significant effect on both nanomechanical properties and ultrastructural deformation mechanisms of samples derived from adult bovine tibial bone. Partial and complete demineralization was carried out using phosphoric and ethylenediamine tetraacetic acid treatments to produce samples with mineral contents that varied between 37 and 0 weight percent (wt%). The undemineralized samples were found to have a mineral content of ~58 wt%. Nanoindentation experiments (maximum loads ~1000 μN and indentation depths ~500 nm) perpendicular to the osteonal axis for the ~58 wt% samples were found to have an estimated elastic modulus of ~7–12 GPa, which was 4–6× greater than that obtained for the ~0 wt% samples. The yield strength of the ~58 wt% samples was found to be ~0.24 GPa; 3.4× greater than that of the ~0 wt% sample. These results are discussed in the context of in situ and post-mortem atomic force microscopy imaging studies which show clear residual deformation after indentation for all samples studied. The partially demineralized samples underwent collagen fibril deformation and kinking without loss of the characteristic banding structure at low maximum loads (~300 μN). At higher maximum loads (~700 μN) mechanical denaturation of collagen fibrils was observed within the indent region, as well as disruption of interfibril interfaces and slicing through the thickness of individual fibrils leading to microcracks along the tip apex lines and outside the indent regions. A finite element elastic-plastic continuum mechanical model was able to predict the nanomechanical behavior of all samples on loading and unloading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. LAKES, Nature 361 (1993) 511.

    Article  Google Scholar 

  2. W. J. LANDIS, Bone 16 (1995) 533.

    Article  PubMed  Google Scholar 

  3. J. Y. RHO, L. KUHN-SPEARING and P. ZIOUPOS, Med. Eng. Phys. 20 (1998) 92.

    Article  PubMed  Google Scholar 

  4. S. WEINER and H. D. WAGNER, Ann. Rev. Mater. Sci. 28 (1998) 271.

    Article  Google Scholar 

  5. R. M. BILTZ and E. D. PELLEGRINO, J. Bone Joint Surg., 51-A (1969) 456.

    Google Scholar 

  6. S. MANN, in “Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry” (Oxford Chemistry Masters Series, 2001) p. 89.

  7. M. NORDIN and V. FRANKEL, in “Basic Biomechanics of the Musculoskeletal System” (Lea & Febiger, Philadelphia, 1989) p. 3.

  8. J. Y. RHO and G. M. PHARR, in “Mechanical Testing of Bone and the Bone-Implant Interface,” edited by Y. H. An and R. H. Draughn (CRC Press, Boca Raton, FL, 2000) p. 257.

  9. S. HENGSBERGER, A. KULIK and Ph. ZYSSET, Euro. Cells Mater. 1 (2001) 12.

    Google Scholar 

  10. S. J. EPPELL et al., J. Orthop. Res. 19 (2001) 1027.

    Article  PubMed  Google Scholar 

  11. T. HASSENKAM et al. Bone 35 (2004) 4.

    Article  PubMed  Google Scholar 

  12. V. BARANAUSKAS et al., J. Vac. Sci. Technol. A 19 (2001) 1042.

    Article  Google Scholar 

  13. J. THOMPSON et al., Nature 414 (2001) 773.

    Article  PubMed  Google Scholar 

  14. J. Y. RHO et al., J. Biomed. Mater. Res. 45 (1999) 48.

    Article  PubMed  Google Scholar 

  15. J. Y. RHO, T. Y. TSUI and G. M. PHARR, Biomaterials 18 (1997) 1325.

    Article  PubMed  Google Scholar 

  16. J. Y. RHO et al., Bone 25 (1999) 295.

    Article  PubMed  Google Scholar 

  17. Z. FAN, J. SWADENER, J. RHO, M. ROY and G. PHARR, “Anisotropy Nanoindentation Properties of Human Cortical Bone,” Transactions of the Annual Meeting of the Orthopaedic Research Society (San Francisco, CA, 2001) vol. 26, paper no. 0525.

  18. V. L. FERGUSON, A. J. BUSHBY and A. BOYDE, J. Anatomy 203 (2003) 191.

    Article  Google Scholar 

  19. J. D. CURREY, J. Biomech. 37 (2004) 549.

    Article  PubMed  Google Scholar 

  20. L. K. BACHRACH et al., J. Clin. Endocrin. Metabol. 84 (1999) 4702.

    Article  Google Scholar 

  21. K. J. BUNDY, in “Bone Mechanics,” edited by S. C. Cowin (CRC Press, Boca Raton, Florida, 1989) p. 197.

    Google Scholar 

  22. S. C. COWIN, in “Bone Mechanics,” edited by S. C. Cowin (CRC Press, Boca Raton, Florida, 1989) p. 98.

    Google Scholar 

  23. W. C. OLIVER and G. M. PHARR, J. Mater. Res. 7 (1992) 1564.

    Google Scholar 

  24. F. E. FENINAT et al., J. Biomed. Mater. Res. 42 (1998) 549.

    Article  PubMed  Google Scholar 

  25. D. P. NICOLELLA et al., “Ultrastructural Characterization of Damaged Cortical Bone Using Atomic Force Microscopy,” in Proceedings of the 1999 American Society of Mechanical Engineering (ASME) Bioengineering Conference: Big Sky, Montana, 1999.

  26. S. S. SHEIKO and M. MOLLER, Chem. Rev. 101 (2001) 4099.

    Article  PubMed  Google Scholar 

  27. S. HENNING et al., in Augustusburg Conference of Advanced Science, Augustusburg, Saxony, Germany, October 11–13, 1999. Weblink: http://www1.medizin.unihalle.de/biomechanik/acas99/abstracts/henning.htm.

  28. M. AKAO, H. AOKI and K. KATO, J. Mater. Sci. 16 (1981) 809.

    Article  Google Scholar 

  29. G. E. LLOYD, Mineral. Mag. 51 (1987) 3.

    Google Scholar 

  30. J. G. SKEDROS, R. D. BLOEBAUM, K. N. BACHUS and T. M. BOYCE, J. Biomed. Mater. Res. 27 (1993) 47.

    Article  PubMed  Google Scholar 

  31. J. G. SKEDROS et al., ibid. 27 (1993) 57.

    Article  PubMed  Google Scholar 

  32. T. M. BOYCE, R. D. BLOEBAUM, K. N. BACHUS and J. G. SKEDROS, Scanning Microscopy 4(3) (1990) 591.

    PubMed  Google Scholar 

  33. A. BOYDE and S. J. JONES, Metab. Bone Dis. and Rel. Res. 5 (1983) 145.

    Article  Google Scholar 

  34. A. CARDEN et al., Calcified Tissue Intern. 72 (2003) 166.

    Article  Google Scholar 

  35. C. P. TARNOWSKI, M. A. IGNELZI and M. D. MORRIS, J. Bone Miner. Res. 17 (2002) 1118.

    PubMed  Google Scholar 

  36. H. HERTZ, J. Reine Angew Math 92 (1881) 156.

    Google Scholar 

  37. R. G. MUNRO, “Elastic Moduli Data for Polycrystalline Ceramics,” in NISTIR 6853. National Institute of Standards and Technology, Gaithersburg, Maryland 20899, 2002.

  38. S. WEINER and W. TRAUB, The FASEB Journal 6 (1992) 879.

    PubMed  Google Scholar 

  39. M. J. GLIMCHER, in “Metabolic Bone Disease,” 2nd ed., edited by L.V. Alvioli (Grune and Stratton, Inc., Orlando, Fl, 1987) Chapter 3, p. 49.

  40. E. P. KATZ and S. T. LI, J. Mol. Bio. 80 (1973) 1.

    Article  Google Scholar 

  41. V. B. ROSEN, L. W. HOBBS and M. SPECTOR, Biomaterials 23(3) (2002) 921.

    Article  PubMed  Google Scholar 

  42. A. COURTNEY, W. C. HAYES and L. J. GIBSON, J. Biomech. 29 (1996) 1463.

    Article  PubMed  Google Scholar 

  43. S. P. KOTHA and N. GUZELSU, ibid. 36 (2003) 1683.

    Article  PubMed  Google Scholar 

  44. R. T. HART, in “Bone Mechanics,” edited by S. C. Cowin (CRC Press, Boca Raton, Florida, 1989) p. 54.

    Google Scholar 

  45. H. J. QI, K. TAI and C. ORTIZ, (2004) in preparation.

  46. Z. FAN and J. Y. RHO, J. Biomed. Mater. Res. A 67 (2003) 208.

    Article  PubMed  Google Scholar 

  47. J. Y. RHO et al., J. Biomechanics 35 (2002) 189.

    Article  Google Scholar 

  48. M. E. ROY et al., J. Biomed. Mater. Res. 44 (1999) 191.

    Article  PubMed  Google Scholar 

  49. D. T. REILLY, A. H. BURSTEIN and V. H. FRANKEL, J. Biomech. 7 (1974) 271.

    Article  PubMed  Google Scholar 

  50. Z. FAN et al., J. Orthop. Res. 20 (2002) 806.

    Article  PubMed  Google Scholar 

  51. J. D. CURREY, J. Biomech. 21 (1988) 131.

    Article  PubMed  Google Scholar 

  52. S. N. DANILCHENKO et al., Cryst. Res. Technol. 39 (2004) 71.

    Article  Google Scholar 

  53. K. J. VAN VLIET et al., Phys. Rev. B 67 (2003) 104105.

    Article  Google Scholar 

  54. T. GUTSMANN et al., Biophys. J. 84 (2003) 2593.

    PubMed  Google Scholar 

  55. S. K. SARKAR et al., Biochemistry 26 (1987) 6793.

    Article  PubMed  Google Scholar 

  56. S. N. VAIDYA et al., J. Mater. Sci. 32 (1997) 3213.

    Article  Google Scholar 

  57. M. C. BOYCE et al., J. Mech. Phys. Solids 49 (2001a) 1073.

    Article  Google Scholar 

  58. Idem., ibid. 49 (2001b) 1343.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tai, K., Qi, H.J. & Ortiz, C. Effect of mineral content on the nanoindentation properties and nanoscale deformation mechanisms of bovine tibial cortical bone. J Mater Sci: Mater Med 16, 947–959 (2005). https://doi.org/10.1007/s10856-005-4429-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-4429-9

Keywords

Navigation