Skip to main content

Advertisement

Log in

Formation of unique three-dimensional interpenetrating network structure with a ternary composite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ternary composite of reduced graphene oxide/multi-walled carbon nanotubes (RGO/MWCNT)/polyimide (PI) with high-performance mechanical and electrical properties was synthesized via in situ polymerization. The unique three-dimensional interpenetrating network structure conferred the conductive pathways for electrons, resulting from the strong interfacial covalent bonds between RGO/MWCNT and the PI matrix. The electrical conductivity of (RGO/MWCNT)/PI reached 4.4 × 10− 4 S m−1 with the filler loading concentration at an extremely low value (0.2 wt%), which was significantly higher than that of the neat PI. The (RGO/MWCNT)/PI composite films exhibited high tensile strength (up to 462 MPa) and tensile modulus (260 MPa). Furthermore, the introduction of RGO/MWCNT enhanced the thermal stability of the (RGO/MWCNT)/PI composites (from 579 to 623 °C). The composite film is expected to be extensively applied in the field of electronics, solar cells and biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.-H. Chou, C.-L. Tsai, W.-C. Chen, G.-S. Liou, Polym. Chem. 5, 6718–6727 (2014)

    Article  CAS  Google Scholar 

  2. Z. Chen, R. Pfattner, Z. Bao, Adv. Electron. Mater. 3, 1600397 (2017)

    Article  Google Scholar 

  3. A. Weathers, Z.U. Khan, R. Brooke, D. Evans, M.T. Pettes, J.W. Andreasen, X. Crispin, L. Shi, Adv. Mater. 27, 2101–2106 (2015)

    Article  CAS  Google Scholar 

  4. Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Chem. Soc. Rev. 44, 6684–6696 (2015)

    Article  CAS  Google Scholar 

  5. B.-S. Yim, J.-M. Kim, J. Mater. Sci.: Mater. Electron. 27, 9159–9171 (2016)

    CAS  Google Scholar 

  6. H. Feng, W. Ma, Z.-K. Cui, X. Liu, J. Gu, S. Lin, Q. Zhuang, J. Mater. Chem. A 5, 8705–8713 (2017)

    Article  CAS  Google Scholar 

  7. S. Han, D. Wu, S. Li, F. Zhang, X. Feng, Adv. Mater. 26, 849–864 (2014)

    Article  CAS  Google Scholar 

  8. C. Gao, G. Chen, Compos. Sci. Technol. 124, 52–70 (2016)

    Article  CAS  Google Scholar 

  9. C.N. Rao, K. Gopalakrishnan, U. Maitra, ACS Appl. Mater. Interfaces 7, 7809–7832 (2015)

    Article  CAS  Google Scholar 

  10. M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil, O. Regev, Chem. Mater. 27, 2100–2106 (2015)

    Article  CAS  Google Scholar 

  11. J. Cao, C. Chen, Q. Zhao, N. Zhang, Q. Lu, X. Wang, Z. Niu, J. Chen, Adv. Mater. 28, 9629–9636 (2016)

    Article  CAS  Google Scholar 

  12. H. Xu, J. Liu, Y. Chen, C.-L. Li, J. Tang, Q. Li, J. Mater. Sci.: Mater. Electron. 28, 10674–10683 (2017)

    CAS  Google Scholar 

  13. P. Yang, X. Ma, X. Ni, J. Mater. Sci.: Mater. Electron. 28, 3695–3702 (2016)

    Google Scholar 

  14. L. Yu, C. Shearer, J. Shapter, Chem. Rev. 116, 13413–13453 (2016)

    Article  CAS  Google Scholar 

  15. J. Chen, X. Cui, Y. Zhu, W. Jiang, K. Sui, Carbon 114, 441–448 (2017)

    Article  CAS  Google Scholar 

  16. F. Jin, M. Feng, K. Jia, X. Liu, J. Mater. Sci.: Mater. Electron. 26, 5152–5160 (2015)

    CAS  Google Scholar 

  17. O.-K. Park, J.-Y. Hwang, M. Goh, J.H. Lee, B.-C. Ku, N.-H. You, Macromolecules 46, 3505–3511 (2013)

    Article  CAS  Google Scholar 

  18. Z. Ounaies, Compos. Sci. Technol. 63, 1637–1646 (2003)

    Article  CAS  Google Scholar 

  19. N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, J.K. Kim, Adv. Mater. 26, 5480–5487 (2014)

    Article  CAS  Google Scholar 

  20. A. Koganemaru, Y. Bin, Y. Agari, M. Matsuo, Adv. Funct. Mater. 14, 842–850 (2004)

    Article  Google Scholar 

  21. H. Liu, J. Gao, W. Huang, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo, Z. Guo, Nanoscale 8, 12977–12989 (2016)

    Article  CAS  Google Scholar 

  22. J.Y. Oh, G.H. Jun, S. Jin, H.J. Ryu, S.H. Hong, ACS Appl. Mater. Interfaces 8, 3319–3325 (2016)

    Article  CAS  Google Scholar 

  23. D.T. Pham, T.H. Lee, D.H. Luong, F. Yao, A. Ghosh, V.T. Le, … Y.H. Lee, Acs Nano 9, 2018–2027 (2015)

    Article  CAS  Google Scholar 

  24. J. Wang, R. Wei, L. Tong, X. Liu, J. Mater. Sci.: Mater. Electron. 28, 3978–3986 (2016)

    Google Scholar 

  25. K. Zhang, X. Gao, Q. Zhang, X. Chen, J. Mater. Sci.: Mater. Electron. 29, 3401–3410 (2017)

    Google Scholar 

  26. X. Fang, X. Liu, Z.-K. Cui, J. Qian, J. Pan, X. Li, Q. Zhuang, J. Mater. Chem. A 3, 10005–10012 (2015)

    Article  CAS  Google Scholar 

  27. W.S. Hummers Jr., R.E. Offeman, J. Am. Chem. Soc. 80, 1339–1339 (1958) 1339-

    Article  CAS  Google Scholar 

  28. Z. Xie, Q. Zhuang, Q. Wang, X. Liu, Y. Chen, Z. Han, Polymer 52, 5271–5276 (2011)

    Article  CAS  Google Scholar 

  29. Y. Chen, S. Zhang, X. Liu, Q. Pei, J. Qian, Q. Zhuang, Z. Han, Macromolecules 48, 365–372 (2015)

    Article  CAS  Google Scholar 

  30. M. Sun, G. Wang, X. Li, Q. Cheng, C. Li, Ind. Eng. Chem. Res. 51, 3981–3987 (2012)

    Article  CAS  Google Scholar 

  31. Y. Han, Y. Lu, Carbon 45, 2394–2399 (2007)

    Article  CAS  Google Scholar 

  32. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558–1565 (2007)

    Article  CAS  Google Scholar 

  33. J.-Y. Wang, S.-Y. Yang, Y.-L. Huang, H.-W. Tien, W.-K. Chin, C.-C.M. Ma, J. Mater. Chem. 21, 13569 (2011)

    Article  CAS  Google Scholar 

  34. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22, 3906–3924 (2010)

    Article  CAS  Google Scholar 

  35. T.K. Gupta, M. Choosri, K.M. Varadarajan, S. Kumar, J. Mater. Sci., (2018)

  36. W. Chou, C. Wang, C. Chen, Compos. Sci. Technol. 68, 2208–2213 (2008)

    Article  CAS  Google Scholar 

  37. H.W. Ha, A. Choudhury, T. Kamal, D.H. Kim, S.Y. Park, ACS Appl. Mater. Interfaces 4, 4623–4630 (2012)

    Article  CAS  Google Scholar 

  38. A. Hussein, K. Youssef, Yasser, W.W. Abdel-Monem, Diab, Poly. Compos. 38(11) (2016)

  39. J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Nat. Nanotechnol. 3, 206–209 (2008)

    Article  CAS  Google Scholar 

  40. P.G. Ren, D.X. Yan, X. Ji, T. Chen, Z.M. Li, Nanotechnology 22, 055705 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51573045, 51773060) and the International Collaboration Research Program of Science and Technology Commission of Shanghai (16520722000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shifeng Deng or Qixin Zhuang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 678 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Fang, X., Liu, X. et al. Formation of unique three-dimensional interpenetrating network structure with a ternary composite. J Mater Sci: Mater Electron 29, 18699–18707 (2018). https://doi.org/10.1007/s10854-018-9993-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9993-0

Navigation