Skip to main content

Advertisement

Log in

A Comparison of Pt/Si and Pt3Cu/Si Schottky nano-heterojunctions: enhanced direct methanol energy converter based on non-adiabatic system and molecular adsorption

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to utilize the miniaturization exothermic oxidation of methanol in the microelectronic device as an energy source rather than industrial waste, nano-heterojunctions between Si and 20 nm ultra-thin catalyst Pt3Cu or Pt film were fabricated to investigate the energy conversion of methanol in this study. Methanol was catalyzed by Pt3Cu or Pt to release energy, then electrons were excited and passed through the Schottky barrier of Pt3Cu/Si or Pt/Si, which were calculated to be 0.43 and 0.80 eV, respectively. Thereupon, hot electron current was formed in a ballistic transport mode. Pt3Cu, Pt and Si have good high temperature stability. Pt3Cu has a higher crystallinity and better electronic structure than Pt and is dominated by (111) crystal orientation. Thus, Pt3Cu has higher catalytic activity and stronger ability to overcome the toxicity of CO, making it easier to obtain stable hot electron current. The factors that affect the hot electron current are varied from chemical reaction rate to Au electrode structure with the increase of temperature. This work is likely to provide a new reference to enhance the methanol’s direct conversion effectively with a stable current in the solid-state way at different temperature. Herein we report for the first time achieving methanol as hot electron energy source. Therefore, the maximum utilization of energy could be realized by turning waste methanol into treasure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Tiba, A. Omri, Renew. Sustain. Energy Rev. 69, 1129–1146 (2017)

    Article  Google Scholar 

  2. G.A. Olah, Angew. Chem. Int. Ed. 44, 2636–2639 (2005)

    Article  CAS  Google Scholar 

  3. K. Natori, J. Appl. Phys. 76, 4879–4890 (1994)

    Article  CAS  Google Scholar 

  4. Y.H. Huang, C. Rettner, D. Auerbach, A.M. Wodtke, Science 290, 111–114 (2000)

    Article  CAS  Google Scholar 

  5. E. Hasselbrink, Curr. Opin. Solid State Mater. Sci. 10, 192–204 (2006)

    Article  CAS  Google Scholar 

  6. H. Nienhaus, Surf. Sci. Rep. 45, 1–78 (2002)

    Article  CAS  Google Scholar 

  7. B. Gergen, H. Nienhaus, W.H. Weinberg, E.W. McFarland, Science 294, 2521–2523 (2001)

    Article  CAS  Google Scholar 

  8. X.Z. Ji, G.A. Somorjai, J. Phys. Chem. B 109, 22530–22535 (2005)

    Article  CAS  Google Scholar 

  9. J.Y. Park, S.W. Lee, C. Lee, H. Lee, Catal. Lett. 147, 1851–1860 (2017)

    Article  CAS  Google Scholar 

  10. X. Cao, Y. Jie, N. Wang, Z.L. Wang, Adv. Energy Mater. 6, 1600665 (2016)

    Article  Google Scholar 

  11. J. Liu, A. Goswami, K. Jiang, F. Khan, S. Kim, R. McGee, Z. Li, Z. Hu, J. Lee, T. Thundat, Nat. Nanotechnol. 13, 112–116 (2018)

    Article  CAS  Google Scholar 

  12. Y.K. Lee, C.H. Jung, J. Park, H. Seo, G.A. Somorjai, J.Y. Park, Nano Lett. 11, 4251–4255 (2011)

    Article  CAS  Google Scholar 

  13. J. Zhao, S.C. Nguyen, R. Ye, B. Ye, H. Weller, G.A. Somorjai, A.P. Alivisatos, F.D. Toste, ACS Central Sci. 3, 482–488 (2017)

    Article  CAS  Google Scholar 

  14. H. Nienhaus, H.S. Bergh, B. Gergen, A. Majumdar, W.H. Weinberg, E.W. McFarland, Appl. Phys. Lett. 74, 4046–4048 (1999)

    Article  CAS  Google Scholar 

  15. H. Nienhaus, H.S. Bergh, B. Gergen, A. Majumdar, W.H. Weinberg, E.W. McFarland, Phys. Rev. Lett. 82, 446–449 (1999)

    Article  CAS  Google Scholar 

  16. M. Scheele, I.I. Nedrygailov, E. Hasselbrink, D. Diesing, Vacuum 111, 137–141 (2015)

    Article  CAS  Google Scholar 

  17. Q. Shuai, S. Kaufmann, D.J. Auerbach, D. Schwarzer, A.M. Wodtke, J. Phys. Chem. Lett. 8, 1657–1663 (2017)

    Article  CAS  Google Scholar 

  18. I.I. Nedrygailov, J.Y. Park, Chem. Phys. Lett. 645, 5–14 (2016)

    Article  CAS  Google Scholar 

  19. G. Ertl, Annu. Rev. Phys. Chem. 68, 1–17 (2017)

    Article  CAS  Google Scholar 

  20. I.I. Nedrygailov, E.G. Karpov, Sens. Actuators B 148, 388–391 (2010)

    Article  CAS  Google Scholar 

  21. H. Lee, I.I. Nedrygailov, Y.K. Lee, C. Lee, H. Choi, J.S. Choi, C.G. Choi, J.Y. Park, Nano Lett. 16, 1650–1656 (2016)

    Article  CAS  Google Scholar 

  22. G.A. Somorjai, H. Frei, J.Y. Park, JACS 131, 16589–16605 (2009)

    Article  CAS  Google Scholar 

  23. E.G. Karpov, I. Nedrygailov, Phys. Rev. B 81, 205443 (2010)

    Article  Google Scholar 

  24. E.G. Karpov, I.I. Nedrygailov, Appl. Phys. Lett. 94, 214101 (2009)

    Article  Google Scholar 

  25. N.J. Ray, E.G. Karpov, ACS Appl. Mater. Interfaces 8, 32077–32082 (2016)

    Article  CAS  Google Scholar 

  26. J.Y. Park, H. Lee, J.R. Renzas, Y. Zhang, G.A. Somorjai, Nano Lett. 8, 2388–2392 (2008)

    Article  CAS  Google Scholar 

  27. S.H. Lee, I.I. Nedrygailov, S. Oh, J.Y. Park, Catal. Today 303, 282–288 (2018)

    Article  CAS  Google Scholar 

  28. J. Kalinowski, V. Fattori, M. Cocchi, J.A.G. Williams, Coord. Chem. Rev. 255, 2401–2425 (2011)

    Article  CAS  Google Scholar 

  29. G. Yang, Z. Wu, W. Wang, Z. Zhang, Z. Hu, Nano Energy 42, 195–204 (2017)

    Article  CAS  Google Scholar 

  30. S.H. Joo, J.Y. Park, C.K. Tsung, Y. Yamada, P. Yang, G.A. Somorjai, Nat. Mater. 8, 126–131 (2009)

    Article  CAS  Google Scholar 

  31. K.W. Frese, J. Electrochem. Soc. 139, 3234–3243 (1992)

    Article  CAS  Google Scholar 

  32. M. Oezaslan, F.d.r Hasché, P. Strasser, J. Electrochem. Soc. 159, B444 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (Grant No: 5177060654), Yunnan Hu Zhiyu Expert Workstation ([2014]5). We also would like to thank the Center of Advanced Electronic Materials and Devices and Instrumental Analysis Center of Shanghai Jiao Tong University for providing experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyu Hu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest to disclose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7835 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wu, Z., Fu, X. et al. A Comparison of Pt/Si and Pt3Cu/Si Schottky nano-heterojunctions: enhanced direct methanol energy converter based on non-adiabatic system and molecular adsorption. J Mater Sci: Mater Electron 29, 16486–16495 (2018). https://doi.org/10.1007/s10854-018-9742-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9742-4

Navigation