Skip to main content
Log in

Tens of micron-thick, crack-free yttrium iron garnet films on a Gd3Ga5O12 substrate based on the layer by layer growth method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the maximum thickness of crack-free yttrium-iron-garnet ferrite film was increased from 7 to 13 µm by layer by layer growth method. Also, the effect of a layer by layer growth method on films morphology, crystal structure and magnetic properties were investigated. X-ray diffraction θ–2θ revealed the orientation of crystal structure could be increased by the layer-by-layer growth method. Scanning electron microscopy and stylus profiler measurement showed the roughness and morphology of film surface were improved efficiently after using the layer-by-layer growth method. Magnetic hysteresis loops and FMR spectrum representing this layer-by-layer growth method could efficiently increase film magnetism and decrease FMR linewidth. Consequently, this innovative method of layer-by-layer growth efficiently provides a pathway to prepare excellent properties, tens of micron-thick, crack-free yttrium iron garnet films and creates unique significance in the electronics industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Lang, M. Montazeri, M.C. Onbasli, X. Kou et al., Nano Lett. 14, 3459 (2014)

    Article  Google Scholar 

  2. F.F.W.A. Wan, H.H. Jaafar, M.F. Ain, N.S. Abdullah, Z.A. Ahmad, J. Mater. Sci. Mater. Electron. 26(1), 1–11 (2014)

    Google Scholar 

  3. K. Ando, S. Watanabe, S. Mooser, E. Saitoh, H. Sirringhaus, Nat. Mater. 12, 622 (2013)

    Article  Google Scholar 

  4. M. Veis, E. Lišková, R. Antoš et al., Thin Solid Films 519, 8041 (2011)

    Article  Google Scholar 

  5. A.N. Hapishah, M. Hashim, M.M. Syazwan, I.R. Idza, N. Rodziah, J. Mater. Sci. Mater. Electron. 1–9 (2017)

  6. I.V. Zavislyak, V.P. Sohatsky, M.A. Popov, G. Srinivasan, Phys. Rev. 87, 7 (2013)

    Article  Google Scholar 

  7. M. Ezawa, J. Nanosci. Nanotechnol. 12, 386–395 (2012)

    Article  Google Scholar 

  8. M. Pardavi-Horvath, J. Magn. Magn. Mater. 215, 171–183 (2000)

    Article  Google Scholar 

  9. J.D. Bierlein, L.W. Hinderks, P.M. Richards, J. Appl. Phys. 38, 1232–1233 (1967)

    Article  Google Scholar 

  10. H. Zheng, J.J. Zhou, J.X. Deng, P. Zheng et al., Mater. Lett. 123, 181 (2014)

    Article  Google Scholar 

  11. V.G. Harris, A. Geiler, Y. Chen et al., J. Magn. Magn. Mater. 321, 2035 (2009)

    Article  Google Scholar 

  12. C. Subramaniam, T. Yamada, K. Kobashi et al., Nat. Commun. 4, 2202 (2013)

    Article  Google Scholar 

  13. V.G. Harris, IEEE Trans. Magn. 48, 1075 (2012)

    Article  Google Scholar 

  14. I.I. Syvorotka, I.M. Syvorotka, S.B. Ubizskii, Solid State Phenom. 200, 250 (2013)

    Article  Google Scholar 

  15. M. Huang, Z.C. Xu, Thin Solid Films 450, 324–328 (2004)

    Article  Google Scholar 

  16. J.M. Robertson, J. Cryst. Growth 45, 233 (1978)

    Article  Google Scholar 

  17. H. Buhay et al., IEEE Trans. Magn. 31, 3832 (1995)

    Article  Google Scholar 

  18. A. Sposito et al., Opt. Mater. Express 3, 624 (2013)

    Article  Google Scholar 

  19. A. Furuya et al., IEEE Trans. Magn. 37, 2407 (2001)

    Article  Google Scholar 

  20. P.C. Dorsey et al., J. Appl. Phys. 81, 6884 (1997)

    Article  Google Scholar 

  21. X.T. Zhou et al., J. Magn. Magn. Mater 320, 1817 (2008)

    Article  Google Scholar 

  22. H. Zheng, P. Zheng, Q. Feng, J. Deng, Z. Ying, L. Zheng, Mater. Lett. 218, 241 (2018)

    Article  Google Scholar 

  23. B. Bhoi, B. Sahu, N. Venkataramani et al., IEEE Trans. Magn. 51, 1 (2015)

    Article  Google Scholar 

  24. Y. Krochenberger, K.S. Yun, T. Hatano et al., J. Appl. Phys. 106, 123911 (2009)

    Article  Google Scholar 

  25. C.P. Hartwig, D.W. Readey, J. Appl. Phys. 41, 1351 (1970)

    Article  Google Scholar 

  26. M.V. Schneider, Bell Labs Tech. J. 48, 1421 (1969)

    Article  Google Scholar 

  27. P.C. Dorsey et al., J. Appl. Phys. 81, 6884–6689 (1997)

    Article  Google Scholar 

  28. S.T. Shiue, C.H. Yang, R.S. Chu et al., Thin Solid Films 485, 169 (2005)

    Article  Google Scholar 

  29. E. Popova, N. Keller, F. Gendron et al., J. Vac. Sci. Technol. 19, 2567 (2001)

    Article  Google Scholar 

  30. C. Kittel, Phys. Rev. 73, 161 (1948)

    Google Scholar 

  31. D. Venkateswarlu, K.G. Padmalekha, S.V. Bhat, P.S.A. Kumar, IEEE Trans. Magn. 49, 3097 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by Natural Science Foundation of Zhejiang Province of China (Grant Nos. LQ17A040002 and LY17F010021), the Key R&D Program of Zhejiang Province of China (No. 2017C01004), National Natural Science Foundation of China (Nos. 51702075, 11704092), the Nonprofit technology Research program of Zhejiang Province (No. 2017C31019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Zheng, P., Wu, Q. et al. Tens of micron-thick, crack-free yttrium iron garnet films on a Gd3Ga5O12 substrate based on the layer by layer growth method. J Mater Sci: Mater Electron 29, 11790–11794 (2018). https://doi.org/10.1007/s10854-018-9278-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9278-7

Navigation