Skip to main content
Log in

Enhancement of fluorescent properties of photonic crystals containing triplet–triplet annihilation upconversion materials via adjusting incident angles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A triplet–triplet annihilation upconversion luminescent (TTA-UCL) material of platinum(II)-octaethylporphyrin and 9,10-diphenylanthracene (PtDPA) was dispersed in the silica photonic crystal (PC) gaps to construct a hybrid fluorescent structure. The morphology, forbidden band effects and fluorescent properties were characterized by field emission scanning electron microscopy, Ultraviolet–Visible spectrophotometer and photoluminescence analysis, respectively. The results indicated that the fluorescent intensity of PtDPA detected from different angles was enhanced with the aid of PC structure and the emission intensity came to the strongest when the emission and excitation peaks of PtDPA were coincident with the forbidden bands of the PC structure. Crystal diffraction theory, finite-difference-time-domain method and plane wave expansion method were used to analyze the effect of incident angle on forbidden band effects of the PC film. The results showed that the forbidden band position of the PC moved from 571 to 400 nm when the incident angle changed from 0° to 75° gradually and split into two forbidden bands when the incident angle was larger than 45°. The adjustment of incident angle, thus, provided a convenient way to control the fluorescent properties of TTA-UCL materials coupled with PCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Liu, J. Qiu, Chem. Soc. Rev. 44, 8714 (2015)

    Article  Google Scholar 

  2. G. Tian, X. Zhang, Z. Gu, Y. Zhao, Adv. Mater. 27, 7692 (2015)

    Article  Google Scholar 

  3. J. Qiu, Q. Jiao, D. Zhou, Z. Yang, J. Rare Earths 34, 341 (2016)

    Article  Google Scholar 

  4. D.Y. Kondakov, Philos. Trans. A Math. Phys. Eng. Sci. 373, (2015). doi:10.1098/rsta.2014.0321

  5. X.J. Zhu, Q.Q. Su, W. Feng, F.Y. Li, Chem. Soc. Rev. 46, 1025 (2017)

    Article  Google Scholar 

  6. B. McKenna, R.C. Evans, Adv. Mater. (2017). doi:10.1002/adma.201606491

    Google Scholar 

  7. Q. Dou, L. Jiang, D. Kai, C. Owh, X.J. Loh, Drug Discov. Today (2017). doi:10.1016/j.drudis.2017.04.003

    Google Scholar 

  8. J. Fang, W. Wang, C. Zhu, L. Fang, J. Jin, Y. Ni, C. Lu, Z. Xu, Appl. Catal. B Environ. 217, 100 (2017)

    Article  Google Scholar 

  9. S. Baluschev, K. Katta, Y. Avlasevich, K. Landfester, Mater. Horiz. 3, 478 (2016)

    Article  Google Scholar 

  10. T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, S. Kawakami, IEICE T. Electron. E87C, 283 (2004)

    Google Scholar 

  11. Y. Kitagawa, N. Ozaki, Y. Takata, N. Ikeda, Y. Watanabe, Y. Sugimoto, K. Asakawa, J. Lightwave Technol. 27, 1241 (2009)

    Article  Google Scholar 

  12. K. Rivoire, Z. Lin, F. Hatami, W.T. Masselink, J. Vuckovic, Opt. Express 17, 22609 (2009)

    Article  Google Scholar 

  13. Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, H. Song, Adv. Mater. 28, 2518 (2016)

    Article  Google Scholar 

  14. J. Liao, Z. Yang, J. Sun, S. Lai, B. Shao, J. Li, J. Qiu, Z. Song, Y. Yang, Sci. Rep. 5, 613 (2015)

  15. A. Jimenez-Solano, J.F. Galisteo-Lopez, H. Miguez, Small 11, 2727 (2015)

    Article  Google Scholar 

  16. F. Brian, T. Cunningham, M. Zhang, Y. Zhuo, L. Kwon, C. Race, IEEE Sens. J. 16, 3349 (2016)

    Article  Google Scholar 

  17. J. Ge, Y. Yin, Angew. Chem. Int. Ed. Engl. 50, 1492 (2011)

    Article  Google Scholar 

  18. H. Li, J.X. Wang, R.M. Wang, Y.L. Song, Prog. Chem. 23, 1060 (2011)

    Google Scholar 

  19. D. Men, D. Liu, Y. Li, Sci. Bull. 61, 1358 (2016)

    Article  Google Scholar 

  20. C. Blum, A.P. Mosk, I.S. Nikolaev, V. Subramaniam, W.L. Vos, Small 4, 492 (2008)

    Article  Google Scholar 

  21. K. Baert, B. Kolaric, W. Libaers, R.A.L. Vallée, M. Di Vece, P. Lievens, K. Clays, Res. Lett. Nanotechnol. 2008, 1 (2008)

    Article  Google Scholar 

  22. W. Niu, L.T. Su, R. Chen, H. Chen, Y. Wang, A. Palaniappan, H. Sun, A.L.Y. Tok, Nanoscale 6, 817 (2014)

    Article  Google Scholar 

  23. Y. Yang, P. Zhou, W. Xu, S. Xu, Y. Jiang, X. Chen, H. Song, J. Mater. Chem. C 4, 659 (2016)

    Article  Google Scholar 

  24. Z. Yin, Y. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, H. Song, Chem. Commun. 49, 3781 (2013)

    Article  Google Scholar 

  25. J.-H. Kang, S.-H. Kim, A. Fernandez-Nieves, E. Reichmanis, J. Am. Chem. Soc. 139, 5708 (2017)

    Article  Google Scholar 

  26. O.S. Kwon, J.H. Kim, J.K. Cho, J.H. Kim, ACS Appl. Mater. Interface 7, 318 (2015)

    Article  Google Scholar 

  27. J. Liao, Z. Yang, H. Wu, D. Yan, J. Qiu, Z. Song, Y. Yang, D. Zhou, Z. Yin, J. Mater. Chem. C 1, 6541 (2013)

    Article  Google Scholar 

  28. J.P. Ge, L. He, J. Goebl, Y.D. Yin, J. Am. Chem. Soc. 131, 3484 (2009)

    Article  Google Scholar 

  29. X. Zheng, D. Li, X. Li, J. Chen, C. Cao, J. Fang, J. Wang, Y. He, Y. Zheng, Appl. Catal. B Environ. 168, 408 (2015)

    Article  Google Scholar 

  30. Z.W. Yang, Y.D. Wang, J.Y. Liao, J.Z. Yang, J.B. Qiu, Z.G. Song, IEEE Photonics J. 7, 1400808 (2015)

    Google Scholar 

  31. D. Yan, J. Zhu, H. Wu, Z. Yang, J. Qiu, Z. Song, X. Yu, Y. Yang, D. Zhou, Z. Yin, R. Wang, J. Mater. Chem. 22, 18558 (2012)

    Article  Google Scholar 

  32. L.M.B. Hatton, S. Davis, K.H. Sandhage, J. Aizenberg, Proc. Natl. Acad. Sci. 107, 10354 (2010)

    Article  Google Scholar 

  33. J. Liao, Z. Yang, S. Lai, B. Shao, J. Li, J. Qiu, Z. Song, Y. Yang, J. Phys. Chem. C 118, 17992 (2014)

    Article  Google Scholar 

  34. J. Liao, Z. Yang, H. Wu, S. Lai, J. Qiu, Z. Song, Y. Yang, D. Zhou, Z. Yin, Surf. Rev. Lett. 21, 1450017 (2014)

    Article  Google Scholar 

  35. A.E. Serebryannikov, A.Y. Petrov, E. Ozbay, Appl. Phys. Lett. 94, 181101 (2009)

    Article  Google Scholar 

  36. A. Belkhir, F.I. Baida, Phys. Rev. E 77, 056701 (2008)

    Article  Google Scholar 

  37. V.I.B.M. Vasiliev, A.N. Kalish, V.A. Kotov, A.K. Zvezdin, K. Alameh, IEEE Trans. Magn. 43, 382 (2006)

    Article  Google Scholar 

  38. S.G. Romanov, T. Maka, C.M.S. Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, C. Jouanin, Phys. Rev. E 63, 056603 (2001)

    Article  Google Scholar 

  39. H.M. van Driel, W.L. Vos, Phys. Rev. B 62, 9872 (2000)

    Article  Google Scholar 

  40. I.S. Nikolaev, P. Lodahl, W.L. Vos, Phys. Rev. A 71, 053813 (2005)

    Article  Google Scholar 

  41. Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, J. Am. Chem. Soc. 133, 10878 (2011)

    Article  Google Scholar 

  42. X. Liu, Y. Ni, C. Zhu, L. Fang, J. Kou, C. Lu, Z. Xu, Nanotechnology 27, 295605 (2016)

    Article  Google Scholar 

  43. K. Liu, T.A. Schmedake, R. Tsu, Phys. Lett. A 372, 4517 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

Natural Science Foundation of Jiangsu Province (Grant No. BK20141459), financial support from Priority Academic Program Development of the Jiangsu Higher Education Institutions (PAPD) and Qing Lan Project, Six Talent Peaks Project in Jiangsu Province (Grant No. XCL-029) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaru Ni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 951 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Fang, J., Ni, Y. et al. Enhancement of fluorescent properties of photonic crystals containing triplet–triplet annihilation upconversion materials via adjusting incident angles. J Mater Sci: Mater Electron 29, 1680–1689 (2018). https://doi.org/10.1007/s10854-017-8081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8081-1

Navigation