Skip to main content
Log in

Comparison study of graphene based conductive nanocomposites using poly(methyl methacrylate) and polypyrrole as matrix materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphene was used as the filler to mix with two kinds of polymer materials, poly(methyl methacrylate) (PMMA) and polypyrrole (PPy). PMMA is an insulator and PPy is an intrinsic semiconducting/conducting polymer. Graphene/PMMA nanocomposite (GrPMMA) was produced by solution blending and spin-coating deposition, and graphene/PPy nanocomposite (GrPPy) was produced by in situ polymerization and doctor-blade coating. The X-ray diffraction and Raman spectroscopy were used to characterize the structures of GrPMMA and GrPPy. The electrical conductivity was studied as a function of graphene concentration for both GrPMMA and GrPPy. The electrical conductivity of PMMA was improved drastically after adding graphene, and the electrical conductivity of GrPMMA increases as the graphene concentration increases. However, the electrical conductivity of PPy decreases after adding graphene, and the electrical conductivity of GrPPy decreases as the graphene concentration increases. The difference in change in electrical conductivity of PMMA and PPy after addition of graphene may be due to the different electron transport mechanisms of those two nanocomposite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X. Du, I. Skachko, A. Barker, E.Y. Andrei, Nat. Nanotechnol. 3, 491–495 (2008)

    Article  Google Scholar 

  2. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902–907 (2008)

    Article  Google Scholar 

  3. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385–388 (2008)

    Article  Google Scholar 

  4. M. Batzill, Surf. Sci. Rep. 67, 83–115 (2012)

    Article  Google Scholar 

  5. H. An, W.-J. Lee, J. Jung, Curr. Appl. Phys. 11, S81–S85 (2011)

    Article  Google Scholar 

  6. M. Gautam, A.H. Jayatissa, Mater. Sci. Eng. C 31, 1405–1411 (2011)

    Article  Google Scholar 

  7. C. Dimitrakopoulos, Y.-M. Lin, A. Grill, D.B. Farmer, M. Freitag, Y. Sun, S.-J. Han, Z. Chen, K.A. Jenkins, Y. Zhu, Z. Liu, T.J. McArdle, J.A. Ott, R. Wisnieff, P. Avouris, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 28, 985 (2010)

    Article  Google Scholar 

  8. D. Wei, J.I. Mitchell, C. Tansarawiput, W. Nam, M. Qi, P.D. Ye, X. Xu, Carbon 53, 374–379 (2013)

    Article  Google Scholar 

  9. J.D. Caldwell, T.J. Anderson, J.C. Culbertson, G.G. Jernigan, K.D. Hobart, F.J. Kub, M.J. Tadjer, J.L. Tedesco, J.K. Hite, M.A. Mastro, R.L. Myers-Ward, C.R. Eddy Jr, P.M. Campbell, D.K. Gaskill, ACS Nano 4, 1108–1114 (2010)

    Article  Google Scholar 

  10. Y. Lee, S. Bae, H. Jang, S. Jang, S.E. Zhu, S.H. Sim, Y.I. Song, B.H. Hong, J.H. Ahn, Nano Lett. 10, 490–493 (2010)

    Article  Google Scholar 

  11. S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, S. Iijima, Nat. Nanotechnol. 5, 574–578 (2010)

    Article  Google Scholar 

  12. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)

    Article  Google Scholar 

  13. S. Wang, P.K. Ang, Z. Wang, A.L. Tang, J.T. Thong, K.P. Loh, Nano Lett. 10, 92–98 (2010)

    Article  Google Scholar 

  14. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282–286 (2006)

    Article  Google Scholar 

  15. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Nat. Nanotechnol. 3, 538–542 (2008)

    Article  Google Scholar 

  16. U. Khan, A. O’Neill, M. Lotya, S. De, J.N. Coleman, Small 6, 864–871 (2010)

    Article  Google Scholar 

  17. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, Nat. Nanotechnol. 3, 563–568 (2008)

    Article  Google Scholar 

  18. H. Yang, Y. Hernandez, A. Schlierf, A. Felten, A. Eckmann, S. Johal, P. Louette, J.J. Pireaux, X. Feng, K. Mullen, V. Palermo, C. Casiraghi, Carbon 53, 357–365 (2013)

    Article  Google Scholar 

  19. H.L. Poh, F. Sanek, A. Ambrosi, Z. Zhao, Z. Sofer, M. Pumera, Nanoscale 4, 3515–3522 (2010)

    Article  Google Scholar 

  20. H. Kim, A.A. Abdala, C.W. Macosko, Macromolecules 43, 6515–6530 (2010)

    Article  Google Scholar 

  21. M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Science 335, 1326–1330 (2012)

    Article  Google Scholar 

  22. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  23. L. Huang, C. Li, W. Yuan, G. Shi, Nanoscale 5, 3780–3786 (2013)

    Article  Google Scholar 

  24. S.N. Tripathi, P. Saini, D. Gupta, V. Choudhary, J. Mater. Sci. 48, 6223–6232 (2013)

    Article  Google Scholar 

  25. X. Feng, Z. Yan, R. Li, X. Liu, W. Hou, Polym. Bull. 70, 2291–2304 (2013)

    Article  Google Scholar 

  26. X. Yan, X. Zhang, H. Liu, Y. Liu, J. Ding, Y. Liu, Q. Cai, J. Zhang, Synth. Met. 196, 1–7 (2014)

    Article  Google Scholar 

  27. M. Gautam, A.H. Jayatissa, Graphene based field effect transistor for the detection of ammonia. J. Appl. Phys. 112, 064304 (2012)

    Article  Google Scholar 

  28. A. Bhattacharya, S. De, S.N. Bhattacharya, S. Das, Phys. Condens. Matter 6, 10499 (1994)

    Article  Google Scholar 

  29. T.K. Vishnyvardhan, V.R. Kulkarani, C. Basavaraja, S.C. Ragavendra, Synthesis, characterization and a.c. conductivity of polypyrrole/Y2O3 composites. Bull. Mater. Sci. 29, 77–83 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahalapitiya H. Jayatissa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Jayatissa, A.H. Comparison study of graphene based conductive nanocomposites using poly(methyl methacrylate) and polypyrrole as matrix materials. J Mater Sci: Mater Electron 26, 7780–7783 (2015). https://doi.org/10.1007/s10854-015-3424-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3424-2

Keywords

Navigation