Skip to main content
Log in

Enhancement of Seebeck coefficient in Sb-rich Sb2Te3 thin film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influence of excess antimony (Sb) on the Seebeck coefficient of antimony telluride (Sb2Te3) was investigated. Sb-rich Sb2Te3 thin film experimentally acquires Seebeck coefficient of 536 µV K−1 at room temperature, almost six times of stoichiometric Sb2Te3 thin film 90 µV K−1. The prominent enhancement of Seebeck coefficient could be attributed to carrier energy filtering effect at Sb/Sb2Te3 nanocrystal boundaries, evidenced by a set of characterizations. Meanwhile, Sb-rich Sb2Te3 thin film behaves low thermal conductivity. This experiment result implies that by altering Sb content, various Seebeck coefficients would be acquired in Sb-rich Sb2Te3 films. The highly thermoelectricity performance is especially appropriate for thermo-electric device such as thermoelectric sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Androulakis, C.H. Lin, H.J. Kong, C. Uher, C.I. Wu, T. Hogan, B.A. Cook, T. Caillat, K.M. Paraskevopoulos, M.G. Kanatzidis, J. Am. Chem. Soc. 129, 9780–9788 (2007)

    Article  Google Scholar 

  2. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.K. Yu, W.A. Goddard lii, J.R. Heath, Nature 451, 168–171 (2008)

    Article  Google Scholar 

  3. T.C. Harman, Science 297, 2229–2232 (2002)

    Article  Google Scholar 

  4. X.H. Yang, X.Y. Qin, J. Zhang, D. Li, H.X. Xin, M. Liu, J. Alloys Compd. 558, 203–211 (2013)

    Article  Google Scholar 

  5. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Science 321, 554–557 (2008)

    Article  Google Scholar 

  6. S. Faleev, F. Léonard, Phys. Rev. B 77, 214304 (2008)

    Article  Google Scholar 

  7. J.P. Heremans, C.M. Thrush, D.T. Morelli, J. Appl. Phys. 98, 063703 (2005)

    Article  Google Scholar 

  8. Z. Xiong, X. Chen, X. Huang, S. Bai, L. Chen, Acta Mater. 58, 3995–4002 (2010)

    Article  Google Scholar 

  9. J.M. Zide, D.O. Klenov, S. Stemmer, A.C. Gossard, G. Zeng, J.E. Bowers, D. Vashaee, A. Shakouri, Appl. Phys. Lett. 87, 112102 (2005)

    Article  Google Scholar 

  10. M.Y. Kim, T.S. Oh, J. Electron. Mater. 38, 1176–1181 (2009)

    Article  Google Scholar 

  11. B. Fang, Z. Zeng, X. Yan, Z. Hu, J. Mater. Sci. Mater. Electron. 24, 1105–1111 (2013)

    Article  Google Scholar 

  12. D.G. Cahill, Rev. Sci. Instrum. 61, 802 (1990)

    Article  Google Scholar 

  13. X. Zheng, L. Qiu, G. Su, D. Tang, Y. Liao, Y. Chen, J. Nanopart. Res. 13, 6887–6893 (2011)

    Article  Google Scholar 

  14. T.B. Chen, P. Fan, Z.H. Zheng, D.P. Zhang, X.M. Cai, G.X. Liang, J.R. Chi, Adv. Mater. Res. 2400, 194–196 (2011)

    Article  Google Scholar 

  15. M. Cutler, N. Mott, Phys. Rev. 181, 1336–1340 (1969)

    Article  Google Scholar 

  16. R. Kim, M.S. Lundstrom, J. Appl. Phys. 111, 024508 (2012)

    Article  Google Scholar 

  17. D.H. Rose, F.S. Hasoon, R.G. Dhere, D.S. Albin, R.M. Ribelin, X.S. Li, Y. Mahathongdy, T.A. Gessert, P. Sheldon, Prog. Photovolt. Res. Appl. 7, 331–340 (1999)

    Article  Google Scholar 

  18. M.A. Matin, M. Mannir Aliyu, A.H. Quadery, N. Amin, Sol. Energy Mater. Sol. Cells 94, 1496–1500 (2010)

    Article  Google Scholar 

  19. G. Hao, X. Qi, G. Wang, X. Peng, S. Chang, X. Wei, J. Zhong, RSC Adv. 2, 10694 (2012)

    Article  Google Scholar 

  20. A. Minnich, M. Dresselhaus, Z. Ren, G. Chen, Energy Environ. Sci. 2, 466–479 (2009)

    Article  Google Scholar 

  21. D.K. Ko, Y. Kang, C.B. Murray, Nano Lett. 11, 2841–2844 (2011)

    Article  Google Scholar 

  22. S. Sumithra, N.J. Takas, D.K. Misra, W.M. Nolting, P.F.P. Poudeu, K.L. Stokes, Adv. Energy Mater. 1, 1141–1147 (2011)

    Article  Google Scholar 

  23. S. Zhang, T. Zhu, S. Yang, C. Yu, X. Zhao, J. Alloys Compd. 499, 215–220 (2010)

    Article  Google Scholar 

  24. X. Cai, Xa Fan, Z. Rong, F. Yang, Z. Gan, G. Li, J. Phys. D Appl. Phys. 47, 115101 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Shanghai Science and Technology Funds (10520710400, 10PJ1403800, 11DZ1111200), Yunnan Provincial Science and Technology Department (2010AD003), National Natural Science Foundation of China (21103104), Innovation Foundation of Shanghai University and the Special Fund for Selection and Cultivation Excellent Youth in the University of Shanghai city. The authors gratefully acknowledge teachers from Instrumental Analysis Research Centre of Shanghai University for his help in XRD, TEM and XPS experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyu Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wu, Y., Zhang, H. et al. Enhancement of Seebeck coefficient in Sb-rich Sb2Te3 thin film. J Mater Sci: Mater Electron 26, 1619–1624 (2015). https://doi.org/10.1007/s10854-014-2585-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2585-8

Keywords

Navigation