Skip to main content
Log in

Polarized Raman spectroscopy and X-ray diffuse scattering in InGaAs/GaAs(100) quantum-dot chains

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Using polarized Raman spectroscopy and high resolution X-ray diffraction we have investigated self-organized In0.45Ga0.55As quantum-dot chains in InGaAs/GaAs multilayer structures. It is shown that the formation of InGaAs QDs in InGaAs/GaAs multilayered structures is accompanied by a strong improvement in the uniformity of size and shapes of QDs as well as vertical alignment and lateral ordering. At mean densities, extended chains of QDs (up to 5 μm) appear along the \( [1\bar 10] \) direction; however, increased ordering of QDs along the [110] direction could be observed, too. For the first time, InGaAs dot-chains were investigated using polarized Raman scattering. Observation of optical phonons localized in InGaAs QDs and two-dimensional (2D) layers is demonstrated. An obvious anisotropy in the intensity of Raman modes was observed when the electric field vector of the exciting laser beam is parallel or perpendicular to the wire-like axis \( [1\bar 10] \) of dot-chains. This effect may be related to symmetry lowering effects and real anisotropic geometry of the QDs and 2D wetting layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The phonon line at ≈528-531 cm−1 can correspond to the combined mode of LO(InAs)-like (≈240 сm−1) + LO(GaAs)-like (≈287 сm−1).

  2. The degree of linear polarization of the PL band in GaAs QDs is estimated using the ratio \( {{(I_{[1\bar 10]} - I_{[110]} )} \mathord{\left/ {\vphantom {{(I_{[1\bar 10]} - I_{[110]} )} {(I_{[1\bar 10]} + \,I_{[110]} )}}} \right. \kern-\nulldelimiterspace} {(I_{[1\bar 10]} + \,I_{[110]} )}} \) is equal to ≈18%, which coincides with the results obtained for these samples in non-resonant conditions of excitation.

  3. The experimental value of the frequency for the LO(GaAs)-like band in QDs was determined with account of the partial position for the low-frequency 2LO(GaAs)-like phonon line at ≈528–531 сm−1.

References

  1. Semiconductor Quantum Dots: Physics, Spectroscopy and Applications, ed. by Y. Masumoto, T. Takagahara. Nanoscience and Technology (Springer-Verlag, Berlin, Heidelberg, New York, 2002), p. 486

  2. V.A. Shchukin, N.N. Ledentsov, D. Bimberg, Epitaxy of Nanostructures. (Springer-Verlag, Berlin Heidelberg New York, 2004), p. 387

    Google Scholar 

  3. Q. Xie, A. Madhukar, P. Chen, N.P. Kobayashi, Phys. Rev. Lett. 75, 2542 (1995)

    Article  CAS  Google Scholar 

  4. J. Tersoff, C. Teichert, M.G. Lagally, Phys. Rev. Lett. 76, 1675 (1996)

    Article  CAS  Google Scholar 

  5. M. Strassburg, V. Kutzer, U.W. Pohl, A. Hoffmann, I. Broser, N.N. Ledentsov, D. Bimberg, A. Rosenauer, U. Fischer, D. Gerthsen, I.L. Krestnikov, M.V. Maximov, P.S. Kopév, Z.I. Alferov, Appl. Phys. Lett. 72, 942 (1998)

    Article  CAS  Google Scholar 

  6. V. Holý, G. Springholz, M. Pinczolits, G. Bauer, Phys. Rev. Lett. 83, 356 (1999)

    Article  Google Scholar 

  7. G. Springholz, V. Holy, M. Pinczolits, G. Bauer, Science 282, 734 (1998)

    Article  CAS  Google Scholar 

  8. Yu.I. Mazur, W.Q. Ma, X. Wang, Z.M. Wang, G.J. Salamo, M. Xiao, T.D. Mishima, M.B. Johnson, Appl. Phys. Lett. 83, 987 (2003)

    Article  CAS  Google Scholar 

  9. M. Schmidbauer, Th. Wiebach, H. Raidt, M. Hanke, R. Köhler, H. Wawra, Phys. Rev. B 58, 10523 (1998)

    Article  CAS  Google Scholar 

  10. M.Ya. Valakh, M.P. Lisitsa, V.V. Strelchuk, N.V. Vuychik, S.V. Ivanov, A.A. Toropov, T.V. Shubina, P.S. Kop’ev, Semiconductors 37, 1336 (2003)

    Article  CAS  Google Scholar 

  11. J. Groenen, C. Priester, R. Carles, Phys. Rev. B 60, 16013 (1999)

    Article  CAS  Google Scholar 

  12. I. Rasnik, M.J.S.P. Brasil, F. Cerdeira, C.A.C. Mendonc, M.A. Cotta, J. Appl. Phys. 87, 1165 (2000)

    Article  CAS  Google Scholar 

  13. M. Hanke, D. Grigoriev, M. Schmidbauer, P. Schäfer, R. Köhler, U.W. Pohl, R.L. Sellin, D. Bimberg, N.D. Zakharov, P. Werner, Physica E 21, 684 (2004)

    Article  CAS  Google Scholar 

  14. M. Schmidbauer, X-Ray Diffuse Scattering from Self-Organized Mesoscopic Semiconductor Structures, Vol. 199 of Springer Tracts in Modern Physics (Springer, Berlin, Heidelberg, 2004)

  15. O. Yefanov, V. Kladko, O. Gudymenko, V. Strelchuk, Yu. Mazur, Zh. Wang, G. Salamo, Phys. Stat. Sol. (a) 203, 154 (2006)

    Article  CAS  Google Scholar 

  16. V.V. Strelchuk, V.P. Kladko, O.M. Yefanov, O.F. Kolomys, O.I. Gudymenko, M.Ya. Valakh, Yu.I. Mazur, Z.M. Wang, G.J. Salamo, Semiconduct. Phys. Quant. Electr. Optoelectr. 8, 36 (2005)

    CAS  Google Scholar 

  17. W.J. Choi, H. Rho, J.D. Song, J.I. Lee, Y.H. Cho, Physica E 26, 115 (2005)

    Article  CAS  Google Scholar 

  18. Yu.I. Masur, Z.M. Wang, G.J. Salamo, V.V. Strelchuk, V.P. Kladko, V.F. Machulin, M.Ya. Valakh, M.O. Manasreh, J. Appl. Phys. 99, 023517 (2006)

    Article  Google Scholar 

  19. J. Groenen, R. Carles, G. Landa, C. Guerret-Piécourt, C. Fontaine, M. Gendry, Phys. Rev. B 58, 10452 (1998)

    Article  CAS  Google Scholar 

  20. J. Groenen, A. Mlayah, R. Carles, A. Ponchet, A. Le Corre, S. Salaun, Appl. Phys. Lett. 69, 943 (1996)

    Article  CAS  Google Scholar 

  21. I. Kegel, T.H. Metzger, A. Lorke, J. Peisl, J. Stangl, G. Bauer, J.M. Garcia, P.M. Petroff, Phys. Rev. Lett. 85, 1694 (2000)

    Article  CAS  Google Scholar 

  22. N. Liu, J. Tersoff, O. Baklenov, A.L. Holmes Jr., C.K. Shih, Phys. Rev. Lett. 84, 334 (2000)

    Article  CAS  Google Scholar 

  23. S. Kret, T. Benabbas, C. Delamarre, Y. Androussi, A. Dubon, J.Y. Laval, A. Lefebvre, J. Appl. Phys. 86, 1988 (1999)

    Article  CAS  Google Scholar 

  24. H.K. Shin, D.J. Lockwood, C. Lacelle, P.J. Poole, J. Appl. Phys. 88, 6423 (2000) and references therein

    Article  CAS  Google Scholar 

  25. J. Menendes, M. Cardona, Phys. Rev. B 31, 3696 (1985)

    Article  Google Scholar 

  26. P. Parayantal, F.N. Pollak, Phys. Rev. Lett. 52, 1822 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Mazur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strelchuk, V.V., Mazur, Y.I., Wang, Z.M. et al. Polarized Raman spectroscopy and X-ray diffuse scattering in InGaAs/GaAs(100) quantum-dot chains. J Mater Sci: Mater Electron 19, 692–698 (2008). https://doi.org/10.1007/s10854-007-9381-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9381-7

Keywords

Navigation