Skip to main content
Log in

Organic transistor based circuit as drive for planar microfluidic devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Organic transistor based circuits are a promising candidate for acting as drivers for microfluidic devices handling discrete droplets. The ease of fabrication along with the ability to generate desired voltage levels for performing electrowetting based actuation of liquids make them an ideal match for discrete droplet based microfluidic systems. In this article, we report the implementation of an organic transistor based complementary metal-oxide semiconductor (CMOS) inverter used to actuate microliter quantities of droplets on a simple planar microfluidic device. We also present two approaches for fabricating an open-structured device for different applications. The inverter is fabricated using Pentacene and N, N′- bis (n-octyl) dicyanoperylene-3, 4:9, 10-bis (dicarboxyimide) (PDI-8CN2) (Northwestern University). The inverter output is stable and repeatable and is used to actuate droplets over adjacent electrodes as well as in merging of discrete droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.G. Pollack, A.D. Shenderov, R. Fair, Lab Chip 2, 96 (2002)

    Article  CAS  Google Scholar 

  2. M.G. Pollack, R.B. Fair, A.D. Shenderov, Appl. Phys. Lett. 77, 1725 (2000)

    Article  CAS  Google Scholar 

  3. O. Sandre, L. Gorre-Talini, A. Ajdari, J. Prost, P. Silberzan, Phys. Rev. E 60, 2964 (1999)

    Article  CAS  Google Scholar 

  4. B.S. Gallardo, V.K. Gupta, F.D. Eagerton, L.I. Jong, V.S. Craig, R.R. Shah, N.L. Abbott, Science 283, 57 (1999)

    Article  CAS  Google Scholar 

  5. T.S. Sammarco, M.A. Burns, AIChE J. 45, 350 (1999)

    Article  CAS  Google Scholar 

  6. T.B. Jones, M. Gunji, M. Washizu, M.J. Feldman, J. Appl. Phys. 89, 1441 (2001)

    Article  CAS  Google Scholar 

  7. K. Hosokawa, T. Fujii, I. Endo, Anal. Chem. 71, 4781 (1999)

    Article  CAS  Google Scholar 

  8. K. Handique, D.T. Burke, C.H. Mastrangelo, M.A. Burns, Anal. Chem. 73, 1831 (2001)

    Article  CAS  Google Scholar 

  9. K. Ichimura, S.-K. Oh, M. Nakagawa, Science 288, 1624 (2000)

    Article  CAS  Google Scholar 

  10. M. Washizu, IEEE Trans. Ind. Appl. 34, 732 (1998)

    Article  CAS  Google Scholar 

  11. M. Gunji, M. Washizu, J. Phys. D Appl. Phys. 38, 2417 (2005)

    Article  CAS  Google Scholar 

  12. Y. Zhao, S.K. Cho, Lab Chip 6, 137 (2006)

    Article  CAS  Google Scholar 

  13. P. Paik, V.K. Pamula, M.G. Pollack, R.B. Fair, Lab Chip 3, 28 (2003)

    Article  CAS  Google Scholar 

  14. B. Crone, A. Dodabalapur, Y.-Y Lin, R.W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H.E. Katz, W. Li, Nature 403, 521 (2000)

    Article  CAS  Google Scholar 

  15. J. Lee, H. Moon, J. Fowler, T. Schoellhammer, C.-J. Kim, Sens Actuators A 95, 259 (2002)

    Article  Google Scholar 

  16. H. Moon, S.K. Cho, R.L. Garell, Chang-Jin “CJ” Kim, J. Appl. Phys. 92, 4080 (2002)

    Google Scholar 

  17. B. Yoo, T. Jung, D. Basu, A. Dodabalapur, B.A. Jones, A. Facchetti, M.R. Wasielewski, T.J. Marks, Appl. Phys. Lett. 88, 082104 (2006)

    Google Scholar 

  18. A. Salleo, M.L. Chabinyc, M.S. Yang, R.A. Street, Appl. Phys. Lett. 81, 4383 (2002)

    Article  CAS  Google Scholar 

  19. B.K. Crone, A. Dodabalapur, R. Sarpeshkar, R.W. Filas, Y.-Y. Lin, Z. Bao, J.H. O’Neill, H.E. Katz, J. Appl. Phys. 89(9), 5125 (2001)

    Article  CAS  Google Scholar 

  20. T. B. Jones, J. Micromech. Microeng. 15, 1184 (2005)

    Article  Google Scholar 

  21. M. Bienia, C. Quilliet, M. Vallade, Langmuir 19, 9328 (2003)

    Article  CAS  Google Scholar 

  22. Kwan Hyoung Kang, Langmuir 18, 10318 (2002)

    Article  Google Scholar 

  23. M. Vallet, B. Berge, L. Vovelle, Polymer 37, 2465 (1996)

    Article  CAS  Google Scholar 

  24. S. Nadkarni, A. Dodabalapur, Presented at the 47th Annual TMS Electronic Materials Conference (University of California, Santa Barbara, 2005), Session Z

  25. T. Krupenkin, S. Yang, P. Mach, Appl. Phys. Lett. 82, 316 (2003)

    Article  CAS  Google Scholar 

  26. J.T. Mabeck, J.A. DeFranco, D.A. Bernards, G.G. Malliaras, S. Hocdé, C.J. Chase, Appl. Phys. Lett. 87, 013503 (2005)

    Article  Google Scholar 

  27. G. Maltezos, R. Nortrup, S. Jeon, J. Zaumseil, J.A. Rogers, Appl. Phys. Lett. 83, 2067 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of Texas ATP for this project is greatly appreciated. The authors would like to thank Byungwook Yoo, Debarshi Basu, Liang Wang, Daniel Fine and Taeho Jung for their valuable inputs. We are also thankful to Prof. Tobin Marks’ group for supplying the n-type material and for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvid Nadkarni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadkarni, S., Dodabalapur, A. Organic transistor based circuit as drive for planar microfluidic devices. J Mater Sci: Mater Electron 18, 931–937 (2007). https://doi.org/10.1007/s10854-006-9098-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-006-9098-z

Keywords

Navigation