Skip to main content
Log in

Effects of strain on various properties and applications on one-dimensional nano-/microstructures

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Strain is an unavoidable feature of the nanostructures grown by different synthesizing techniques due to several factors like lattice mismatching with substrate, different growth parameters, etc. Part of strain could be released by post-growth treatment such as annealing, detaching sample from substrate and giving further strain. Researchers have worked on minimizing the intrinsic strain for better performances of grown nanostructures and enhancing the stability. But about four decades ago, strain engineering has taken another level of research interest as strain modifies the nanostructures mechanical, electronic and optical properties. Those modifications are beneficial for novel flexible device applications. Thus, nowadays, research related to strain on both one- and two-dimensional nanostructures has boost up for exploring new features, thereby paving the way for future stretchable novel devices. In this article, we first concentrate on the investigations of various strain-related effects on the properties of one-dimensional nanostructures and its advantages. Finally, we discuss the challenges and future opportunities on strain-induced effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Reprinted (adapted) with permission from [12] copyright 2012 American Chemical Society

Figure 2

Reprinted (adapted) with permission from [13] copyright 2014 WILEY–VCH publishing group

Figure 3

Reprinted (adapted) with permission from [62] copyright 2006 American Association for the Advancement of Science (AAAS)

Figure 4

Reprinted (adapted) with permission from [30] copyright 2006 American Chemical Society

Figure 5

Reprinted (adapted) with permission from [33] copyright 2010 WILEY–VCH publishing group

Figure 6

Reprinted (adapted) with permission from [33] copyright 2010 WILEY–VCH publishing group

Figure 7

Reprinted (adapted) with permission from [33] copyright 2010 WILEY–VCH publishing group

Figure 8

Reprinted (adapted) with permission from [33] copyright 2010 WILEY–VCH publishing group

Figure 9

Reprinted (adapted) with permission from [65] copyright 2015 Royal Society of Chemistry publishing group

Figure 10

Reprinted (adapted) with permission from [67] copyright 2013 Nature publishing group

Figure 11

Reprinted (adapted) with permission from [68] copyright 2013 American Chemical Society

Figure 12

Reprinted (adapted) with permission from [68] copyright 2013 American Chemical Society

Figure 13

Reprinted (adapted) with permission from [38] copyright 2016 American Chemical Society

Figure 14

Reprinted (adapted) with permission from [39] copyright 2017 Nature publishing group

Similar content being viewed by others

References

  1. Zhao J, Deng Y, Wei H, Zheng X, Yu Z, Shao Y, Shield JE, Huang J (2017) Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci Adv 3:eaao5616-1–eaao5616-8

    Google Scholar 

  2. Singh S, Khare N (2018) Effect of intrinsic strain on the optical bandgap and magnetic properties of single domain CoFe2O4 nanoparticles. Appl Phys A 124:107-1–107-7

    Google Scholar 

  3. Liao X, Hao F, Xiao H, Chen X (2016) Effects of intrinsic strain on the structural stability and mechanical properties of phosphorene nanotubes. Nanotechnology 27:215701-1–215701-8

    Google Scholar 

  4. Auzelle T, Biquard X, Amalric EB, Fang Z, Roussel H, Cros A, Daudin B (2016) Unraveling the strain state of GaN down to single nanowires. J Appl Phys 120:225701-1–225701-7

    Google Scholar 

  5. Jindal V, Grandusky J, Jamil M, Tripathi N, Thiel B, Sandvik FS, Balch J, LeBoeuf S (2008) Effect of interfacial strain on the formation of AlGaN nanostructures by selective area heteroepitaxy. Physica E 40:478–483

    CAS  Google Scholar 

  6. Han X, Kou L, Lang X, Xia J, Wang N, Qin R, Lu J, Xu J, Liao Z, Zhang X, Shan X, Song X, Gao J, Guo W, Yu D (2009) Electronic and mechanical coupling in bent ZnO nanowires. Adv Mater 21:4937–4941

    CAS  Google Scholar 

  7. Sanchez JM, Trotta R, Piredda G, Schimpf C, Trevisi G, Seravalli L, Frigeri P, Stroj S, Lettner T, Reindl M, Wildmann JS, Edlinger J, Rastelli A (2016) Reversible control of in-plane elastic stress tensor in nanomembranes. Adv Opt Mater 4:682–687

    Google Scholar 

  8. Signorello G, Karg S, Bjork MT, Gotsmann B, Riel H (2013) Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain. Nano Lett 13:917–924

    CAS  Google Scholar 

  9. Wei B, Zheng K, Ji Y, Zhang Y, Zhang Z, Han X (2012) Size-dependent bandgap modulation of ZnO nanowires by tensile strain. Nano Lett 12:4595–4599

    CAS  Google Scholar 

  10. Huang M, Wu Y, Chandra B, Yan H, Shan Y, Heinz TF, Hone J (2008) Direct measurement of strain-induced changes in the band structure of carbon nanotubes. Phys Rev Lett 100:136803-1–136803-4

    Google Scholar 

  11. Fu X, Liao Z, Liu R, Lin F, Xu J, Zhu R, Zhong W, Liu Y, Guo W, Yu D (2015) Strain loading mode dependent bandgap deformation potential in ZnO micro/nanowires. ACS Nano 9:11960–11967

    CAS  Google Scholar 

  12. Su X, Guo W, Du S, Loy MMT, Wang N (2012) Piezotronic effects on the optical properties of ZnO nanowires. Nano Lett 12:5802–5807

    Google Scholar 

  13. Fu X, Su C, Fu Q, Zhu X, Zhu R, Liu C, Liao Z, Xu J, Guo W, Feng J, Li J, Yu D (2014) Tailoring exciton dynamics by elastic strain-gradient in semiconductors. Adv Mater 26:2572–2579

    CAS  Google Scholar 

  14. Fu X, Liao Z, Ye Y, Xu J, Dai L, Zhu R, Guo W, Yu D (2014) Outermost tensile strain dominated exciton emission in bending CdSe nanowires. Sci China Mater 57:26–33

    Google Scholar 

  15. Fu X, Fu Q, Kou L, Zhu X, Zhu R, Xu J, Liao Z, Zhao Q, Guo W, Yu D (2013) Modifying optical properties of ZnO nanowires via strain-gradient. Front Phys 8:509–515

    Google Scholar 

  16. Fu X, Jacopin G, Shahmohammadi M, Liu R, Benameur M, Ganiere JD, Feng J, Guo W, Liao Z, Deveaud B, Yu D (2014) Exciton drift in semiconductors under uniforn strain gradients:application to bent ZnO microwires. ACS Nano 8:3412–3420

    CAS  Google Scholar 

  17. Jang W, Kang K, Soon A (2016) Acute mechano-electronic responses in twisted phosphorene nanoribbons. Nanoscale 8:14778–14784

    CAS  Google Scholar 

  18. Zhang Z, Guo W (2007) Magnetic properties of strained single-walled carbon nanotubes. Appl Phys Lett 90:053114-1–053114-3

    Google Scholar 

  19. Wang X, Cui X, Bhat A, Savage DE, Reno JL, Lagally MG, Paiella R (2018) Ultrawide strain-tuning of light emission from InGaAs nanomembranes. Appl Phys Lett 113:201105-1–201105-4

    Google Scholar 

  20. Chu M, Sun Y, Aghoram U, Thompson SE (2009) Strain: a solution for higher carrier mobility in nanoscale MOSFETs. Annu Rev Mater Res 39:203–229

    CAS  Google Scholar 

  21. Gomez AC, Roldan R, Cappelluti E, Buscema M, Guinea F, van der Zant HSJ, Steele GA (2013) Local strain engineering in atomically thin MoS2. Nano Lett 13:5361–5366

    Google Scholar 

  22. Huang M, Yan H, Chen C, Song D, Heinz TF, Hone J (2009) Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. PNAS 106:7304–7308

    CAS  Google Scholar 

  23. Wang Y, Cong C, Yang W, Shang J, Peimyoo N, Chen Y, Kang J, Wang J, Huang W, Wu T (2015) Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2. Nanoscale 8:2562–2572

    CAS  Google Scholar 

  24. Lee SY, Kim SH, Nam YS, Yu JC, Lee S, Kim DB, Jung ED, Woo JH, Ahn SM, Lee S, Choi KJ, Kim JY, Song MH (2019) Flexibility of semitransparent perovskite light-emitting diodes investigated by tensile properties of the perovskite layer. Nano Lett 19:971–976

    Google Scholar 

  25. Tu Q, Spanopoulos I, Yasaei P, Stoumpos CC, Kanatzidis MG, Shekhawat GS, Dravid VP (2018) Stretching and breaking of ultrathin 2D hybrid organic–inorganic perovskites. ACS Nano 12:10347–10354

    CAS  Google Scholar 

  26. Guo R, Su J, Lin Z, Qin Y, Zhang J, Chang J, Hao Y (2019) Understanding the potential of 2D Ga2O3 in flexible optoelectronic devices: impact of uniaxial strain and electric field. Adv Theory Simul 2:1900106

    Google Scholar 

  27. Huang T, Wei W, Chen X, Dai N (2019) Strained 2D layered materials and heterojunctions. Ann Phys 531:1800465

    CAS  Google Scholar 

  28. Song J, Zhou J, Wang ZL (2006) Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. Nano Lett. 6:1656–1662

    CAS  Google Scholar 

  29. Zhou J, Fei P, Gao Y, Gu Y, Liu J, Bao G, Wang ZL (2008) Mechanical–electrical triggers and sensors using piezoelectric microwires/nanowires. Nano Lett 8:2725–2730

    CAS  Google Scholar 

  30. Wang X, Zhou J, Song J, Liu J, Xu N, Wang ZL (2006) Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett 6:2768–2772

    CAS  Google Scholar 

  31. He JH, Hsin CL, Liu J, Chen LJ, Wang ZL (2007) Piezoelectric gated diode of a single ZnO nanowire. Adv Mater 19:781–784

    CAS  Google Scholar 

  32. Zhou J, Gu Y, Fei P, Mai W, Gao Y, Yang R, Bao G, Wang ZL (2008) Flexible piezotronic strain sensor. Nano Lett 8:3035–3040

    CAS  Google Scholar 

  33. Wu W, Wei Y, Wang ZL (2010) Strain-gated piezotronic logic nanodevices. Adv Mater 22:4711–4715

    CAS  Google Scholar 

  34. Zhou J, Fei P, Gu Y, Mai W, Gao Y, Yang R, Bao G, Wang ZL (2008) Piezoelectric-potential-controlled polarity-reversible schottky diodes and switches of ZnO wires. Nano Lett 8:3973–3977

    CAS  Google Scholar 

  35. Buchine BA, Hughes WL, Degertekin FL, Wang ZL (2006) Bulk acoustic resonator based on piezoelectric ZnO belts. Nano Lett 6:1155–1159

    CAS  Google Scholar 

  36. Lao CS, Quang K, Wang ZL, Park MC, Deng Y (2007) Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors. Appl Phys Lett 90:262107-1–262107-3

    Google Scholar 

  37. Phan HP, Dinh T, Kozeki T, Nguyen TK, Qamar A, Namazu T, Nguyen NT, Dao DV (2016) Nano strain amplifier: making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects. Appl Phys Lett 109:123502-1–123502-5

    Google Scholar 

  38. Petykiewicz J, Nam D, Sukhdeo DS, Gupta S, Buckley S, Piggott AY, Vuckovic J, Saraswat KC (2016) Direct bandgap light emission from strained germanium nanowires coupled with high-Q nanophotonic cavities. Nano Lett 16:2168–2173

    CAS  Google Scholar 

  39. Bao S, Kim D, Onwukaeme C, Gupta S, Saraswat K, Lee KH, Kim Y, Min D, Jung Y, Qiu H, Wang H, Fitzgerald EA, Tan CS, Nam D (2017) Low-threshold optically pumped lasing in highly strained germanium nanowires. Nat Commun 8:1845-1–1845-7

    Google Scholar 

  40. Su J, He J, Zhang J, Lin Z, Chang J, Zhang J, Hao Y (2019) Unusual properties and potential applications of strain BN–MS2 (M = Mo, W) heterostructures. Sci Rep 9:3518-1–3518-9

    Google Scholar 

  41. Li X, Maute K, Dunn ML, Yang R (2010) Strain effects on the thermal conductivity of nanostructures. Phys Rev B 81:245318-1–245318-11

    Google Scholar 

  42. Deng S, Li L, Li M (2018) Stability of direct bandgap under mechanical strains for monolayer MoS2, MoSe2, WS2 and WSe2. Phys E Low Dimens Syst Nanostruct 101:44–49

    CAS  Google Scholar 

  43. Scalise E, Houssa M, Pourtois G, Afanasev V, Stesmans A (2012) Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res 5:43–48

    CAS  Google Scholar 

  44. Virgilio M, Manganelli CL, Grosso G, Pizzi G, Capellini G (2013) Radiative recombination and optical gain spectra in biaxially strained n-type germanium. Phys Rev B 87:235313-1–235313-11

    Google Scholar 

  45. Peelaers H, Walle CGV (2012) Effects of strain on band structure and effective masses in MoS2. Phys Rev B 86:241401-1–241401-5

    Google Scholar 

  46. Shi Z, Tsymbalov E, Dao M, Suresh S, Shapeev A, Li J (2019) Deep elastic strain engineering of bandgap through machine learning. PNAS 116:4117–4122

    CAS  Google Scholar 

  47. Vazinishayan A, Lambada DR, Yang S, Zhang G, Cheng B, Woldu YT, Shafique S, Wang Y, Anastase N (2018) Effects of mechanical strain on optical properties of ZnO nanowire. AIP Adv 8:025306-1–025306-14

    Google Scholar 

  48. Song S, Keum DH, Cho S, Perello D, Kim Y, Lee YH (2016) Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain. Nano Lett 16:188–193

    CAS  Google Scholar 

  49. Manjanath A, Samanta A, Pandey T, Singh AK (2015) Semiconductor to metal transition in bilayer phosphorene under normal compressive strain. Nanotechnology 26:075701

    Google Scholar 

  50. Zhang Y, Chang TR, Zhou B, Cui YT, Yan H, Liu Z, Schmitt F, Lee J, Moore R, Chen Y, Lin H, Jeng HT, Mo SK, Hussain Z, Bansil A, Shen ZX (2014) Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol 9:111–115

    CAS  Google Scholar 

  51. Signorello G, Lortscher E, Khomyakov PA, Karg S, Dheeraj DL, Gotsmann B, Weman H, Riel H (2014) Inducing a direct to pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress. Nat Commun 5:3655-1–3655-8

    Google Scholar 

  52. Wang Y, Cong C, Yang W, Shang J, Peimyoo N, Chen Y, Kang J, Wang J, Huang W, Yu T (2015) Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res 8:2562–2572

    CAS  Google Scholar 

  53. Desai SB, Seol G, Kang JS, Fang H, Battaglia C, Kapadia R, Ager JW, Guo J, Javey A (2014) Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett 14:4592–4597

    CAS  Google Scholar 

  54. Han X, Kou L, Zhang Z, Zhang Z, Zhu X, Xu J, Liao Z, Guo W, Yu D (2012) Strain-gradient effect on energy bands in bent ZnO microwires. Adv Mater 24:4707–4711

    CAS  Google Scholar 

  55. Liao ZM, Wu HC, Fu Q, Fu X, Zhu X, Xu J, Shvets IV, Zhang Z, Guo W, Wang YL, Zhao Q, Wu X, Yu D (2012) Strain-induced exciton fine structure splitting and shift in bent ZnO microwires. Sci Rep 2:452

    Google Scholar 

  56. Fu Q, Zhang ZY, Kou L, Wu P, Han X, Zhu X, Gao J, Xu J, Zhao Q, Guo W, Yu D (2011) Linear Strain-gradient effect on the energy bandgap in bent CdS nanowires. Nano Res 4:308–314

    CAS  Google Scholar 

  57. He R, Yang P (2006) Giant piezoresistance effect in silicon nanowires. Nat Nanotechnol 1:42–46

    CAS  Google Scholar 

  58. Lugstein A, Steinmair M, Steiger A, Kosina H, Bertagnolli E (2010) Anomalous piezoresistance effect in ultrastrained silicon nanowires. Nano Lett 10:3204–3208

    CAS  Google Scholar 

  59. Zhang Y, Yan X, Yang Y, Huang Y, Liao Q, Qi J (2012) Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv Mater 24:4647–4655

    CAS  Google Scholar 

  60. Wang ZL (2007) Nanopiezotronics. Adv Mater 19:889–892

    CAS  Google Scholar 

  61. Gao Z, Zhou J, Gu Y, Fei P, Hao Y, Bao G, Wang ZL (2009) Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor. J Appl Phys 105:113707-1–113707-6

    Google Scholar 

  62. Wang ZL, Song J (2006) Piezoelectric naogenerators based on zinc oxide nanowire arrays. Science 312:242–246

    CAS  Google Scholar 

  63. Toriyama T, Sugiyama S (2003) Single crystal silicon piezoresistive nano-wire bridge. Sens Actuat A 108:244–249

    CAS  Google Scholar 

  64. Toriyama T, Tanimoto Y, Sugiyama S (2002) Single crystal silicon nano-wire piezoresistors for mechanical sensors. J Microelectromech Syst 11:605–611

    CAS  Google Scholar 

  65. Phan HP, Kozeki T, Dinh T, Fujii T, Qamar A, Zhu Y, Namazu T, Nguyen NT, Dao DV (2015) Piezoresistive effect of p-type silicon nanowires fabricated by a top-down process using FIB implantation and wet etching. RSC Adv 5:82121–82126

    CAS  Google Scholar 

  66. Milne JS, Rowe ACH, Arscott S, Renner C (2010) Giant piezoresistance effects in silicon nanowires and microwires. Phys Rev Lett 105:226802

    CAS  Google Scholar 

  67. Suess MJ, Geiger R, Minamisawa RA, Schiefler G, Frigerio J, Chrastina D, Isella G, Spolenak R, Faist J, Sigg H (2013) Analysis of enhanced light emission from highly strained germanium microbridges. Nat Photon 7:466–472

    Google Scholar 

  68. Nam D, Sukhdeo DS, Kang JH, Petykiewicz J, Lee JH, Jung WS, Vuckovic J, Brongersma ML, Saraswat KC (2013) Strain-induced pseudoheterostructure nanowires confining carriers at room temperature with nanoscale-tunable band profiles. Nano Lett 13:3118–3123

    CAS  Google Scholar 

  69. Sukhdeo DS, Nam D, Kang JH, Brongersma ML, Saraswat KC (2014) Direct bandgap germanium-on-silicon inferred from 5.7% <100> uniaxial tensile strain. Photon Res 2:A8–A13

    Google Scholar 

  70. Zhang X, Wu G (2016) Effect of strain on thermal conductivity of Si thin films. J Nanomater 2016:4984230

    Google Scholar 

  71. Zhu LL, Zheng XJ (2010) Stress field effects on phonon properties in spatially confined semiconductor nanostructures. CMC 18:301–320

    Google Scholar 

  72. Fu XW, Liao ZM, Liu R, Xu J, Yu D (2013) Size-dependent correlations between strain and phonon frequency in individual ZnO nanowires. ACS Nano 7:8891–8898

    CAS  Google Scholar 

  73. Grosse F, Zimmermann R (2007) Electron–phonon interaction in embedded semiconductor nanostructures. Phys Rev B 75:235320

    Google Scholar 

  74. Li X, Maute K, Dunn ML, Yang R (2010) Strain effects on the thermal conductivity of nanostructures. Phys Rev B 81:245318

    Google Scholar 

  75. Xiang HJ, Yang J, Hou JG, Zhu Q (2006) Piezoelectricity in ZnO nanowires: a first principles study. Appl Phys Lett 89:223111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poulami Ghosh.

Ethics declarations

Conflict of interest

There are no conflicts among the authors to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, P., Huang, M. Effects of strain on various properties and applications on one-dimensional nano-/microstructures. J Mater Sci 55, 7208–7225 (2020). https://doi.org/10.1007/s10853-020-04500-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04500-1

Navigation