Skip to main content

Advertisement

Log in

Flexible metal-free hybrid hydrogel thermoelectric fibers

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) fiber has been developed as a more promising candidate compared with bulk and film to achieve wearable thermoelectric energy harvesting. Single-walled carbon nanotubes (SWCNTs) with nanostructures are considered as an effective conductive filter for the further improvement in the thermoelectric (TE) performance of PEDOT:PSS fibers. However, the previous research primarily focused on PEDOT:PSS/SWCNT films instead of fibers. In this study, PEDOT:PSS/SWCNT hybrid fibers were synthesized via gelation process, which presents a 30% enhancement of the electrical conductivity with negligible changes in Seebeck coefficient. Moreover, there was a significant increase in the Young’s modulus in accordance with the addition of an appropriate amount of SWCNTs. Thereafter, the as-prepared hybrid fibers were treated using ethylene glycol (EG) to further optimize the TE performance. Moreover, the influence of the treatment time and temperature was systematically investigated. The EG treatment resulted in a significant improvement in the electrical conductivity without a significant decrease in the Seebeck coefficient. Furthermore, the hybrid fibers were subject to EG treatment at elevated temperature, whose optimal power factor was approximately 30% higher than that of the EG-treated PEDOT:PSS/SWCNT fibers at 25 °C. This indicates that the solvent treatment at higher temperature improves the TE performance of hybrid fibers. The findings of this study can serve as a guide for the preparation of flexible and metal-free hybrid fiber with enhanced TE performance and Young’s modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Peng M, Dong B, Zou D (2018) Three dimensional photovoltaic fibers for wearable energy harvesting and conversion. J Energy Chem. 27:611–621

    Article  Google Scholar 

  2. Dong K, Peng X, Wang ZL (2019) Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater 32:1902549. https://doi.org/10.1002/adma.201902549

    Article  CAS  Google Scholar 

  3. Zhai S, Karahan HE, Wang C, Pei Z, Wei L, Chen Y (2019) 1D supercapacitors for emerging electronics: current status and future directions. Adv Mater 32:1902387. https://doi.org/10.1002/adma.201902387

    Article  CAS  Google Scholar 

  4. Li C, Jiang F, Liu C, Liu P, Xu J (2019) Present and future thermoelectric materials toward wearable energy harvesting. Appl Mater Today 15:543–557

    Article  Google Scholar 

  5. Zhang L, Lin S, Hua T, Huang B, Liu S, Tao X (2017) Fiber-based thermoelectric generators: materials, device structures, fabrication, characterization, and applications. Adv Energy Mater 8:1700524. https://doi.org/10.1002/aenm.201700524

    Article  CAS  Google Scholar 

  6. Jia Y, Shen L, Liu J, Zhou W, Du Y, Xu J, Liu C, Zhang G, Zhang Z, Jiang F (2019) An efficient PEDOT-coated textile for wearable thermoelectric generators and strain sensors. J Mater Chem C 7:3496–3502

    Article  CAS  Google Scholar 

  7. Shi J, Liu S, Zhang L, Yang B, Shu L, Yang Y, Ren M, Wang Y, Chen J, Chen W, Chai Y, Tao X (2019) Smart textile‐integrated microelectronic systems for wearable applications. Adv Mater 32:1901958. https://doi.org/10.1002/adma.201901958

    Article  CAS  Google Scholar 

  8. Zhang Y, Park SJ (2019) Flexible organic thermoelectric materials and devices for wearable green energy harvesting. Polymers 11:909–927

    Article  CAS  Google Scholar 

  9. Lin Y, Liu J, Wang X, Xu J, Liu P, Nie G, Liu C, Jiang F (2019). An integral p-n connected all-graphene fiber boosting wearable thermoelectric energy harvesting. Compos Commun 16:79–83

    Article  Google Scholar 

  10. Lan X, Wang T, Liu C, Liu P, Xu J, Liu X, Du Y, Jiang F (2019) A high performance all-organic thermoelectric fiber generator towards promising wearable electron. Compos Sci Technol 182:107767. https://doi.org/10.1016/j.compscitech.2019.107767

    Article  CAS  Google Scholar 

  11. Li X, Wang T, Jiang F, Liu J, Liu P, Liu G, Xu J, Liu C, Jiang Q (2019) Optimizing thermoelectric performance of MoS2 films by spontaneous noble metal nanoparticles decoration. J. Alloys Compd. 781:744–750

    Article  CAS  Google Scholar 

  12. Fan X, Nie W, Tsai H, Wang N, Huang H, Cheng Y, Wen R, Ma L, Yan F, Xia Y (2019) PEDOT: PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv Sci 6:1900813. https://doi.org/10.1002/advs.201900813

    Article  CAS  Google Scholar 

  13. Ni D, Song H, Chen Y, Cai K (2019) Free-standing highly conducting PEDOT films for flexible thermoelectric generator. Energy 170:53–61

    Article  CAS  Google Scholar 

  14. Xue Z, Chen S, Gao N, Xue Y, Lu B, Watson OA, Zang L, Xu J (2019) Polymer Reviews. https://doi.org/10.1080/15583724.2019.1673404

    Article  Google Scholar 

  15. Wang X, Meng F, Tang H, Gao Z, Li S, Jiang F, Xu J (2017) An effective dual-solvent treatment for improving the thermoelectric property of PEDOT: PSS with white graphene. J Mater Sci 52:9806–9818. https://doi.org/10.1007/s10853-017-1166-7

    Article  CAS  Google Scholar 

  16. Yao B, Wang H, Zhou Q, Wu M, Zhang M, Li C, Shi G (2017) Ultrahigh‐conductivity polymer hydrogels with arbitrary structures. Adv Mater 29:1700974

    Article  CAS  Google Scholar 

  17. Zhao Y, Wang K, Li S, Zhang P, Shen Y, Fu Y, Zhang Y, Zhou J, Wang C (2018) Polydimethylsiloxane (PDMS)-based flexible optical electrodes with conductive composite hydrogels integrated probe for optogenetics. J Biomed Nanotechnol 14:1099–1106

    Article  CAS  Google Scholar 

  18. Cao S, Tong X, Dai K, Xu Q (2019) A super-stretchable and tough functionalized boron nitride/PEDOT: PSS/poly (N-isopropylacrylamide) hydrogel with self-healing, adhesion, conductive and photothermal activity. J Mater Chem A 7:8204–8209

    Article  CAS  Google Scholar 

  19. Lu B, Yuk H, Lin S, Jian N, Qu K, Xu J, Zhao X (2019) Pure PEDOT: PSS hydrogels. Nat Commun 10:1043

    Article  CAS  Google Scholar 

  20. Liu J, Jia YH, Jiang QL, Jiang FX, Li CC, Wang XD, Liu P, Liu PP, Hu F, Du YK, Xu JK (2018) Highly conductive hydrogel polymer fibers toward promising wearable thermoelectric energy harvesting. ACS Appl Mater Interfaces 10:44033–44040

    Article  CAS  Google Scholar 

  21. Cheng X, Wang L, Wang X, Chen G (2018) Flexible films of poly (3, 4-ethylenedioxythiophene): Poly (styrenesulfonate)/SnS nanobelt thermoelectric composites. Compos Sci Technol 155:247–251

    Article  CAS  Google Scholar 

  22. Xiong J, Jiang F, Shi H, Xu J, Liu C, Zhou W, Jiang Q, Zhu Z, Hu Y (2015) Liquid exfoliated graphene as dopant for improving the thermoelectric power factor of conductive PEDOT: PSS nanofilm with hydrazine treatment. ACS Appl Mater Interfaces 7:14917–14925

    Article  CAS  Google Scholar 

  23. Ni D, Song H, Chen Y, Cai K (2020) Significantly enhanced thermoelectric performance of flexible PEDOT nanowire film via coating Te nanostructures. J Materiomics. https://doi.org/10.1016/j.jmat.2019.07.001

    Article  Google Scholar 

  24. Jiang F, Xiong J, Zhou W, Liu C, Wang L, Zhao F, Liu H, Xu J (2016) Use of organic solvent-assisted exfoliated MoS 2 for optimizing the thermoelectric performance of flexible PEDOT: PSS thin films. J Mater Chem A 4:5265–5273

    Article  CAS  Google Scholar 

  25. Mahakul PC, Sa K, Das B, Subramaniam BVRS, Saha S, Moharana B, Raiguru J, Dash S, Mukherjee J, Mahanandia P (2017) Preparation and characterization of PEDOT: PSS/reduced graphene oxide–carbon nanotubes hybrid composites for transparent electrode applications. J Mater Sci 52:5696–5707

    Article  CAS  Google Scholar 

  26. Kim D, Kim Y, Choi K, Grunlan JC, Yu C (2010) Improved thermoelectric behavior of nanotube-filled polymer composites with poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate). ACS Nano 4:513–523

    Article  CAS  Google Scholar 

  27. Lee W, Kang YH, Lee JY, Jang K-S, Cho SY (2016) Improving the thermoelectric power factor of CNT/PEDOT: PSS nanocomposite films by ethylene glycol treatment. RSC Adv 6:53339–53344

    Article  CAS  Google Scholar 

  28. Song H, Qiu Y, Wang Y, Cai K, Li D, Deng Y, He J (2017) Polymer/carbon nanotube composite materials for flexible thermoelectric power generator. Compos Sci Technol 153:71–83

    Article  CAS  Google Scholar 

  29. Yoo D, Kim J, Lee SH, Cho W, Choi HH, Kim FS, Kim JH (2015) Effects of one-and two-dimensional carbon hybridization of PEDOT: PSS on the power factor of polymer thermoelectric energy conversion devices. J Mater Chem A 3:6526–6533

    Article  CAS  Google Scholar 

  30. Wang X, Wang H, Liu B (2018) Carbon nanotube-based organic thermoelectric materials for energy harvesting. Polymers 10:1196–1218

    Article  CAS  Google Scholar 

  31. Yu C, Choi K, Yin L, Grunlan JC (2011) Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. ACS Nano 5:7885–7892

    Article  CAS  Google Scholar 

  32. Gojny F, Wichmann M, Fiedler B, Schulte K (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study. Compos Sci Technol 65:2300–2313

    Article  CAS  Google Scholar 

  33. Ouyang J, Xu Q, Chu C-W, Yang Y, Li G, Shinar J (2004) On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment. Polymer 45:8443–8450

    Article  CAS  Google Scholar 

  34. Mengistie DA, Chen CH, Boopathi KM, Pranoto FW, Li LJ, Chu CW (2015) Enhanced thermoelectric performance of PEDOT: PSS flexible bulky papers by treatment with secondary dopants. ACS Appl Mater Interfaces 7:94–100

    Article  CAS  Google Scholar 

  35. Kim GH, Shao L, Zhang K, Pipe KP (2013) Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 12:719–723

    Article  CAS  Google Scholar 

  36. Lee CS, Kim JY, Lee DE, Koo YK, Joo J, Han S, Beag YW, Koh SK (2003) Organic based flexible speaker through enhanced conductivity of PEDOT/PSS with various solvents. Synth Met 135–136:13–14

    Article  CAS  Google Scholar 

  37. Ladevèze P, Pelle J-P (2005) Mastering calculations in linear and nonlinear mechanics. Springer, New York

    Google Scholar 

  38. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680

    Article  CAS  Google Scholar 

  39. Lourie O, Wagner HD (1998) Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension. Appl Phys Lett 73:3527–3529

    Article  CAS  Google Scholar 

  40. Lang U, Dual J (2007) Key Eng Mater 345–346:1189–1192

    Article  Google Scholar 

  41. Zhou J, Li EQ, Li R, Xu X, Ventura IA, Moussawi A, Anjum DH, Hedhili MN, Smilgies D-M, Lubineau G, Thoroddsen ST (2015) Semi-metallic, strong and stretchable wet-spun conjugated polymer microfibers. J Mater Chem C 3:2528–2538

    Article  CAS  Google Scholar 

  42. Jalili R, Razal JM, Wallace GG (2012) Exploiting high quality PEDOT: PSS–SWNT composite formulations for wet-spinning multifunctional fibers. J Mater Chem 22(48):25174–25182

    Article  CAS  Google Scholar 

  43. Okuzaki H, Harashina Y, Yan H (2009) Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol. Eur Polym J 45:256–261

    Article  CAS  Google Scholar 

  44. Greco F, Zucca A, Taccola S, Menciassi A, Fujie T, Haniuda H, Takeoka S, Dario P, Mattoli V (2011) Ultra-thin conductive free-standing PEDOT/PSS nanofilms. Soft Matter 7:10642–10650

    Article  CAS  Google Scholar 

  45. Seyedin MZ, Razal JM, Innis PC, Wallace GG (2014) Strain‐responsive polyurethane/PEDOT: PSS elastomeric composite fibers with high electrical conductivity. Adv Funct Mater 24:2957–2966

    Article  CAS  Google Scholar 

  46. Zhou J, Fukawa T, Shirai H, Kimura M (2010) Anisotropic motion of electroactive papers coated with PEDOT/PSS. Macromol Mater Eng 295:671–675

    Article  CAS  Google Scholar 

  47. Moriarty GP, De S, King PJ, Khan U, Via M, King JA, Coleman JN, Grunlan JC (2013) Thermoelectric behavior of organic thin film nanocomposites. J Polym Sci, Part B: Polym Phys 51:119–123

    Article  CAS  Google Scholar 

  48. He M, Ge J, Lin Z, Feng X, Wang X, Lu H, Yang Y, Qiu F (2012) Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface. Energy Environ Sci 5:8351–8358

    Article  CAS  Google Scholar 

  49. Coates NE, Yee SK, McCulloch B, See KC, Majumdar A, Segalman RA, Urban JJ (2013) Effect of interfacial properties on polymer–nanocrystal thermoelectric transport. Adv Mater 25:1629–1633

    Article  CAS  Google Scholar 

  50. Kumar P, Zaia EW, Yildirim E, Repaka DVM, Yang SW, Urban JJ, Hippalgaonkar K (2018) Polymer morphology and interfacial charge transfer dominate over energy-dependent scattering in organic-inorganic thermoelectrics. Nat Commun 9:5347. https://doi.org/10.1002/aelm.201500017

    Article  CAS  Google Scholar 

  51. Lan X, Liu C, Wang T, Hou J, Xu J, Tan R, Nie G, Jiang F(2019) Effect of functional groups on the thermoelectric performance of carbon nanotubes. J Electron Mater 182:107767. https://doi.org/10.1002/aelm.201500017

    Article  CAS  Google Scholar 

  52. Yu C, Kim Y, Kim D, Grunlan J (2008) Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Lett 8:4428–4432

    Article  CAS  Google Scholar 

  53. Shi H, Liu CC, Jiang QL, Xu JK (2015) Effective approaches to improve the electrical conductivity of PEDOT: PSS: a review. Adv Electron Mater 1:1500017. https://doi.org/10.1002/aelm.201500017

    Article  CAS  Google Scholar 

  54. Li X, Liu C, Zhou W, Duan X, Du Y, Xu J, Li C, Liu J, Jia Y, Liu P, Jiang Q, Luo C, Liu C, Jiang F (2019) Roles of polyethylenimine ethoxylated in efficiently tuning the thermoelectric performance of poly(3,4-ethylenedioxythiophene)-rich nanocrystal films. ACS Appl Mater Interfaces 11:8138–8147

    Article  CAS  Google Scholar 

  55. Wang X, Liu P, Jiang Q, Zhou W, Xu J, Liu J, Jia Y, Duan X, Liu Y, Du Y, Jiang F (2018) Efficient DMSO-vapor annealing for enhancing thermoelectric performance of PEDOT: PSS-based aerogel. ACS Appl Mater Interfaces 11:2408–2417

    Article  CAS  Google Scholar 

  56. Lim K, Jung S, Lee S, Heo J, Park J, Kang J-W, Kang Y-C, Kim D-G (2014) The enhancement of electrical and optical properties of PEDOT: PSS using one-step dynamic etching for flexible application. Org Electron 15:1849–1855

    Article  CAS  Google Scholar 

  57. Zhang L, Harima Y, Imae I (2017) Highly improved thermoelectric performances of PEDOT: PSS/SWCNT composites by solvent treatment. Org Electron 51:304–307

    Article  CAS  Google Scholar 

  58. Yan H, Jo T, Okuzaki H (2009) Highly conductive and transparent poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate)(PEDOT/PSS) thin films. Polym J 41:1028–1029

    Article  CAS  Google Scholar 

  59. Jalili R, Razal JM, Innis PC, Wallace GG (2011) One‐step wet‐spinning process of poly (3, 4‐ethylenedioxythiophene): poly (styrenesulfonate) fibers and the origin of higher electrical conductivity. Adv Funct Mater 21:3363–3370

    Article  CAS  Google Scholar 

  60. Jiang Q, Lan X, Liu C, Shi H, Zhu Z, Zhao F, Xu J, Jiang F (2018) High-performance hybrid organic thermoelectric SWNTs/PEDOT: PSS thin-films for energy harvesting. Mater Chem Front 2:679–685

    Article  CAS  Google Scholar 

  61. Song H, Liu C, Xu J, Jiang Q, Shi H (2013) Fabrication of a layered nanostructure PEDOT: PSS/SWCNTs composite and its thermoelectric performance. RSC Adv 3(4):22065–22071

    Article  CAS  Google Scholar 

  62. Kim J-Y, Lee W, Kang YH, Cho SY, Jang K-S (2018) Wet-spinning and post-treatment of CNT/PEDOT: PSS composites for use in organic fiber-based thermoelectric generators. Carbon 133:293–299

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51762018 and 51863009), the Innovation-Driven ‘‘5511′’ Project of Jiangxi Province (20165BCB18016), the Natural Science Foundation of Jiangxi Province (20181ACB20010) and the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology, 2019-skllmd-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peipei Liu, Jingkun Xu or Fengxing Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhu, Z., Zhou, W. et al. Flexible metal-free hybrid hydrogel thermoelectric fibers. J Mater Sci 55, 8376–8387 (2020). https://doi.org/10.1007/s10853-020-04382-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04382-3

Navigation