Skip to main content

Advertisement

Log in

Evaluating the interfacial properties of wrinkled graphene fiber through single-fiber fragmentation tests

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene fiber has attracted much attention due to its potential applications in supercapacitors, dye-sensitized solar cells, actuators, motors, stretchable circuits and functional composites, owing to its high electrical conductivity, tensile strength and good flexibility. The high tensile strength of graphene fiber renders it promising candidate as the reinforcement in the composites. The interface is the key element for the fiber-reinforced composites; however, there is no study about the interfacial evaluation about the graphene fiber reinforcement composites. Herein, in this study, we fabricate the high-strength graphene fibers (up to 890.1 MPa) through the wet spinning and thermal annealing method, make the graphene fiber-reinforced single-fiber composite, and develop a novel and facile fragmentation test to quantitatively evaluate the interfacial performance of graphene fiber. Graphene fiber has the interfacial shear stress (IFSS) of 60.6 MPa, exhibiting one of the highest IFSS among the carbon nanotube yarns and commercial carbon fibers composites. The superior interfacial performance of graphene fiber is attributed to the surface wrinkles and grooves, which establishes strong physical interlocking between graphene fiber and resin, favoring for the stress transfer. This work will pave the way for the development of graphene fiber-reinforced composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  2. Liu Y, Xu Z, Gao W, Cheng Z, Gao C (2017) Graphene and other 2D colloids: liquid crystals and macroscopic fibers. Adv Mater 29(14):1606794

    Google Scholar 

  3. Xu Z, Peng L, Liu Y, Liu Z, Sun H, Gao W, Gao C (2017) Experimental guidance to graphene macroscopic wet-spun fibers, continuous papers, and ultralightweight aerogels. Chem Mater 29(1):319–330

    CAS  Google Scholar 

  4. Meng F, Lu W, Li Q, Byun J-H, Oh Y, Chou T-W (2015) Graphene-based fibers: a review. Adv Mater 27(35):5113–5131

    CAS  Google Scholar 

  5. Xu Z, Gao C (2014) Graphene in macroscopic order: liquid crystals and wet-spun fibers. Acc Chem Res 47(4):1267–1276

    CAS  Google Scholar 

  6. Cheng H, Hu C, Yang Z, Qu L (2014) Graphene fiber: a new material platform for unique applications. NPG Asia Mater 6(7):e113

    CAS  Google Scholar 

  7. Liu Y, Xu Z, Zhan J, Li P, Gao C (2016) Superb electrically conductive graphene fibers via doping strategy. Adv Mater 28(36):7941–7947

    CAS  Google Scholar 

  8. Xin G, Yao T, Sun H, Scott SM, Shao D, Wang G, Lian J (2015) Highly thermally conductive and mechanically strong graphene fibers. Science 349(6252):1083–1087

    CAS  Google Scholar 

  9. Xu Z, Liu Y, Zhao X, Peng L, Sun H, Xu Y, Ren X, Jin C, Xu P, Wang M, Gao C (2016) Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv Mater 28(30):6449–6456

    CAS  Google Scholar 

  10. Xin G, Zhu W, Deng Y, Cheng J, Zhang LT, Chung AJ, De S, Lian J (2019) Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres. Nat Nanotechnol 14(2):168–175

    CAS  Google Scholar 

  11. Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM (2018) Composites with carbon nanotubes and graphene: an outlook. Science 362(6414):547–553

    CAS  Google Scholar 

  12. Lawal AT (2019) Graphene-based nano composites and their applications. A review. Biosens Bioelectron 141:111384

    CAS  Google Scholar 

  13. Gong S, Ni H, Jiang L, Cheng Q (2017) Learning from nature: constructing high performance graphene-based nanocomposites. Mater Today 20(4):210–219

    CAS  Google Scholar 

  14. Zeng Y, Wang H, Cheng H-m (2016) Research progress and potential applications for graphene/polymer composites. New Carbon Mater 31(6):555–567

    Google Scholar 

  15. Ji X, Xu Y, Zhang W, Cui L, Liu J (2016) Review of functionalization, structure and properties of graphene/polymer composite fibers. Compos Part A Appl Sci 87:29–45

    CAS  Google Scholar 

  16. Gaurav A, Singh KK (2018) Fatigue behavior of FRP composites and CNT-embedded FRP composites: a review. Polym Compos 39(6):1785–1808

    CAS  Google Scholar 

  17. Jones FR (2010) A review of interphase formation and design in fibre-reinforced composites. J Adhes Sci Technol 24(1):171–202

    CAS  Google Scholar 

  18. Liu L, Jia C, He J, Zhao F, Fan D, Xing L, Wang M, Wang F, Jiang Z, Huang Y (2015) Interfacial characterization, control and modification of carbon fiber reinforced polymer composites. Compos Sci Technol 121:56–72

    CAS  Google Scholar 

  19. Mohit H, Selvan VAM (2018) A comprehensive review on surface modification, structure interface and bonding mechanism of plant cellulose fiber reinforced polymer based composites. Compos Interface 25(5–7):629–667

    CAS  Google Scholar 

  20. Shao Y, Xu F, Liu W, Zhou M, Li W, Hui D, Qiu Y (2017) Influence of cryogenic treatment on mechanical and interfacial properties of carbon nanotube fiber/bisphenol-F epoxy composite. Compos Part B Eng 125:195–202

    CAS  Google Scholar 

  21. Shi L, Ma L, Li P, Wang M, Guo S, Han P, Song G (2019) The effect of self-synthesized hydroxyl-terminated hyperbranched polymer interface layer on the properties of carbon fiber reinforced epoxy composites. Appl Surf Sci 479:334–343

    CAS  Google Scholar 

  22. Moosburger-Will J, Lachner E, Loeffler M, Kunzmann C, Greisel M, Ruhland K, Horn S (2018) Adhesion of carbon fibers to amine hardened epoxy resin: influence of ammonia plasma functionalization of carbon fibers. Appl Surf Sci 453:141–152

    CAS  Google Scholar 

  23. Ma Y, Yan C, Xu H, Liu D, Shi P, Zhu Y, Liu J (2018) Enhanced interfacial properties of carbon fiber reinforced polyamide 6 composites by grafting graphene oxide onto fiber surface. Appl Surf Sci 452:286–298

    CAS  Google Scholar 

  24. Jiao W, Cai Y, Liu W, Yang F, Jiang L, Jiao W, Wang R (2018) Preparation of carbon fiber unsaturated sizing agent for enhancing interfacial strength of carbon fiber/vinyl ester resin composite. Appl Surf Sci 439:88–95

    CAS  Google Scholar 

  25. Zhao Y, Zhang C, Shao X, Wang Y, Qiu Y (2011) Effect of atmospheric plasma treatment on carbon fiber/epoxy interfacial adhesion. J Adhes Sci Technol 25(20):2897–2908

    CAS  Google Scholar 

  26. Batista MDR, Drzal LT (2018) Carbon fiber/epoxy matrix composite interphases modified with cellulose nanocrystals. Compos Sci Technol 164:274–281

    Google Scholar 

  27. Lutz V, Duchet-Rumeau J, Godin N, Smail F, Lortie F, Gerard JF (2018) Ex-PAN carbon fibers vs carbon nanotubes fibers: from conventional epoxy based composites to multiscale composites. Eur Polym J 106:9–18

    CAS  Google Scholar 

  28. Zheng X, Yao L, Mei X, Yu S, Zhang W, Qiu Y (2016) Comparing effects of thermal annealing and chemical reduction treatments on properties of wet-spun graphene fibers. J Mater Sci 51(21):9889–9901. https://doi.org/10.1007/s10853-016-0222-z

    Article  CAS  Google Scholar 

  29. Zheng X, Zhang K, Yao L, Qiu Y, Wang S (2018) Hierarchically porous sheath–core graphene-based fiber-shaped supercapacitors with high energy density. J Mater Chem A 6(3):896–907

    CAS  Google Scholar 

  30. Zheng X, Yao L, Qiu Y, Wang S, Zhang K (2019) Core-sheath porous polyaniline nanorods/graphene fiber-shaped supercapacitors with high specific capacitance and rate capability. ACS Appl Energy Mater 2(6):4335–4344

    CAS  Google Scholar 

  31. Bascom WD, Jensen RM (1986) Stress transfer in single fiber resin tensile tests. J Adhes 19(3–4):219–239

    CAS  Google Scholar 

  32. Tripathi D, Lopattananon N, Jones FR (1998) A technological solution to the testing and data reduction of single fibre fragmentation tests. Compos Part A Appl Sci 29(9–10):1099–1109

    Google Scholar 

  33. Xu Z, Sun H, Zhao X, Gao C (2013) Ultrastrong fibers assembled from giant graphene oxide sheets. Adv Mater 25(2):188–193

    CAS  Google Scholar 

  34. Zhang Y, Peng J, Li M, Saiz E, Wolf SE, Cheng Q (2018) Bioinspired supertough graphene fiber through sequential interfacial interactions. ACS Nano 12(9):8901–8908

    CAS  Google Scholar 

  35. Kim IH, Yun T, Kim J-E, Yu H, Sasikala SP, Lee KE, Koo SH, Hwang H, Jung HJ, Park JY, Jeong HS, Kim SO (2018) Mussel-inspired defect engineering of graphene liquid crystalline fibers for synergistic enhancement of mechanical strength and electrical conductivity. Adv Mater 30(40):1803267

    Google Scholar 

  36. Jalili R, Aboutalebi SH, Esrafilzadeh D, Shepherd RL, Chen J, Aminorroaya-Yamini S, Konstantinov K, Minett AI, Razal JM, Wallace GG (2013) Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: towards multifunctional textiles. Adv Funct Mater 23(43):5345–5354

    CAS  Google Scholar 

  37. Xiang C, Young CC, Wang X, Yan Z, Hwang C-C, Cerioti G, Lin J, Kono J, Pasquali M, Tour JM (2013) Large flake graphene oxide fibers with unconventional 100% knot efficiency and highly aligned small flake graphene oxide fibers. Adv Mater 25(33):4592–4597

    CAS  Google Scholar 

  38. Li M, Zhang X, Wang X, Ru Y, Qiao J (2016) Ultrastrong graphene-based fibers with increased elongation. Nano Lett 16(10):6511–6515

    CAS  Google Scholar 

  39. Shao Y, Xu F, Marriam I, Liu W, Gao Z, Qiu Y (2019) Quasi-static and dynamic interfacial evaluations of plasma functionalized carbon nanotube fiber. Appl Surf Sci 465:795–801

    CAS  Google Scholar 

  40. Zhao L-M, Feng X, Mi X-j, Li Y-f, Xie H-f, Yin X-q (2014) The interfacial strength improvement of SMA composite using ZnO with electrochemical deposition method. Appl Surf Sci 320:670–673

    CAS  Google Scholar 

  41. Zhang L, Ren C, Zhou C, Xu H, Jin X (2015) Single fiber push-out characterization of interfacial mechanical properties in unidirectional CVI-C/SiC composites by the nano indentation technique. Appl Surf Sci 357:1427–1433

    CAS  Google Scholar 

  42. An H, Li YX, Li M, Gu YZ, Liu YN, Zhang ZG (2012) Interfacial adhesion and micro-failure phenomena in multi-fiber micro-composites using fragmentation test. Compos Interface 19(6):385–396

    CAS  Google Scholar 

  43. Favre JP, Auvray MH, CheneauHenry P, Galiotis C, Vlattas C, Paipetis A, Pegoraro M, Severini F, DiLandro L, Yuan LJ (1996) Fiber/matrix mechanical interaction in carbon fiber/bismaleimide model composites. Polym Compos 17(6):937–947

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 50803010), the Natural Science Foundation of Shanghai (No. 14ZR1400100), the Open Project Program of Anhui Province College of Anhui Province College Key Laboratory of Textile Fabrics, Anhui Engineering and Technology Research Center of Textile (2018AKLTF08) and Start-up Funds of Anhui Polytechnic University (2016YQQ005). The authors thank the China Scholarship Council for the help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianhong Zheng or Lan Yao.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2015 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Zhou, X., Zou, L. et al. Evaluating the interfacial properties of wrinkled graphene fiber through single-fiber fragmentation tests. J Mater Sci 55, 1023–1034 (2020). https://doi.org/10.1007/s10853-019-04060-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04060-z

Navigation