Skip to main content
Log in

Synthesis of Sm–Al metallic glasses designed by molecular dynamics simulations

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Solidification of the Sm-rich Al–Sm alloys has been studied using a newly developed Al–Sm embedded atom model potential by molecular dynamics (MD) simulations. We use descriptors for glass forming ability that have been previously validated for Al-rich Al–Sm alloys, and we predict that among the Sm-rich alloys the best glass formers have compositions between 65 and 75 at.% of Sm. To test this prediction, Al35Sm65 and Al25Sm75 alloys were synthesized by melt spinning. These alloys have been found to be good glass formers, in agreement with predictions from MD simulations. We also synthesized Al10Sm90, which according to MD results should have a low glass forming ability. Indeed, after the melt spinning, the Al10Sm90 was found to be crystalline as verified by multiple experimental characterization techniques. This is the first time that Sm-rich Al–Sm metallic glasses with enhanced glass forming ability have been experimentally synthesized. Our results also demonstrate the capability of specific structural descriptors to predict glass forming ability of Al-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Inoue A (1998) Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog Mater Sci 43:365–520. https://doi.org/10.1016/S0079-6425(98)00005-X

    Article  CAS  Google Scholar 

  2. Perepezko J, Hebert R (2002) Amorphous aluminum alloys—synthesis and stability. Jom-Journal Miner Met Mater Soc 54:34–39

    Article  CAS  Google Scholar 

  3. Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306. https://doi.org/10.1016/S1359-6454(99)00300-6

    Article  CAS  Google Scholar 

  4. Ashby MF, Greer AL (2006) Metallic glasses as structural materials. Scr Mater 54:321–326. https://doi.org/10.1016/j.scriptamat.2005.09.051

    Article  CAS  Google Scholar 

  5. Cheng YQ, Ma E, Sheng HW (2008) Alloying strongly influences the structure, dynamics, and glass forming ability of metallic supercooled liquids. Appl Phys Lett 93:10–13. https://doi.org/10.1063/1.2987727

    Article  CAS  Google Scholar 

  6. Wang JQ, Liu YH, Imhoff S et al (2012) Enhance the thermal stability and glass forming ability of Al-based metallic glass by Ca minor-alloying. Intermetallics 29:35–40. https://doi.org/10.1016/j.intermet.2012.04.009

    Article  CAS  Google Scholar 

  7. Ward L, Agrawal A, Choudhary A, Wolverton C (2015) A general-purpose machine learning framework for predicting properties of inorganic materials. Nat Commun. https://doi.org/10.1038/npjcompumats.2016.28

    Article  Google Scholar 

  8. Bokas GB, Zhao L, Morgan D, Szlufarska I (2017) Increased stability of CuZrAl metallic glasses prepared by physical vapor deposition. J Alloys Compd 728:1110–1115. https://doi.org/10.1016/j.jallcom.2017.09.068

    Article  CAS  Google Scholar 

  9. Miracle DB (2004) A structural model for metallic glasses. Nat Mater 3:697–702. https://doi.org/10.1038/nmat1219

    Article  CAS  Google Scholar 

  10. Bokas GB, Zhao L, Perepezko JH, Szlufarska I (2016) On the role of Sm in solidification of Al–Sm metallic glasses. Scr Mater 124:99–102. https://doi.org/10.1016/j.scriptamat.2016.06.045

    Article  CAS  Google Scholar 

  11. Finney JL (1970) Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc R Soc London A Math Phys Eng Sci 319:479–493

    CAS  Google Scholar 

  12. Sheng HW, Luo WK, Alamgir FM et al (2006) Atomic packing and short-to-medium-range order in metallic glasses. Nature 439:419–425. https://doi.org/10.1038/nature04421

    Article  CAS  Google Scholar 

  13. Lekka CE, Bokas GB, Almyras GA et al (2012) Clustering, microalloying and mechanical properties in Cu/Zr-based glassy models by molecular dynamics simulations and ab initio computations. J Alloys Compd 536(Suppl 1):S65–S69. https://doi.org/10.1016/j.jallcom.2011.11.038

    Article  CAS  Google Scholar 

  14. Wang XD, Jiang QK, Cao QP et al (2008) Atomic structure and glass forming ability of Cu46Zr46Al8 bulk metallic glass. J Appl Phys 104:1–6. https://doi.org/10.1063/1.3009320

    Article  CAS  Google Scholar 

  15. Bokas GB, Lagogianni AE, Almyras GA et al (2013) On the role of Icosahedral-like clusters in the solidification and the mechanical response of Cu-Zr metallic glasses by Molecular Dynamics simulations and Density Functional Theory computations. Intermetallics 43:138–141. https://doi.org/10.1016/j.intermet.2013.07.022

    Article  CAS  Google Scholar 

  16. Cheng YQ, Ma E (2008) Indicators of internal structural states for metallic glasses: local order, free volume, and configurational potential energy. Appl Phys Lett 93:2006–2009. https://doi.org/10.1063/1.2966154

    Article  CAS  Google Scholar 

  17. Shimono M, Onodera H (2007) Icosahedral order in supercooled liquids and glassy alloys. Mater Sci Forum 539–543:2031–2035. https://doi.org/10.4028/www.scientific.net/MSF.539-543.2031

    Article  Google Scholar 

  18. Lee M, Lee CM, Lee KR et al (2011) Networked interpenetrating connections of icosahedra: effects on shear transformations in metallic glass. Acta Mater 59:159–170. https://doi.org/10.1016/j.actamat.2010.09.020

    Article  CAS  Google Scholar 

  19. Wakeda M, Shibutani Y (2010) Icosahedral clustering with medium-range order and local elastic properties of amorphous metals. Acta Mater 58:3963–3969. https://doi.org/10.1016/j.actamat.2010.03.029

    Article  CAS  Google Scholar 

  20. Wilde G, Sieber H, Perepezko JH (1999) Glass formation in Al-rich Al±Sm alloys during solid state processing at ambient temperature. J Non Cryst Solids 252:621–625

    Article  Google Scholar 

  21. Perepezko JH, Hebert RJ, Wu RI, Wilde G (2003) Primary crystallization in amorphous Al-based alloys. J Non Cryst Solids 317:52–61. https://doi.org/10.1016/S0022-3093(02)01983-X

    Article  CAS  Google Scholar 

  22. Perepezko JH, Hebert RJ, Tong WS et al (2003) Nanocrystallization reactions in amorphous aluminum alloys. Mater Trans 44:1982–1992. https://doi.org/10.2320/matertrans.44.1982

    Article  CAS  Google Scholar 

  23. Antonowicz J, Yavari AR, Walter B, Pierre P (2012) Phase separation and nanocrystallization in Al92Sm8 metallic glass. Philos Mag. https://doi.org/10.1080/01446193.2012.693189

    Article  Google Scholar 

  24. Zhao L, Bokas GB, Perepezko JH, Szlufarska I (2017) Nucleation kinetics in Al–Sm metallic glasses. Acta Mater 142:1–7. https://doi.org/10.1016/j.actamat.2017.09.050

    Article  CAS  Google Scholar 

  25. Zeng Q, Mao WL, Sheng H et al (2013) The effect of composition on pressure-induced devitrification in metallic glasses. Appl Phys Lett 102:171905. https://doi.org/10.1063/1.4803539

    Article  CAS  Google Scholar 

  26. Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29:6443–6453. https://doi.org/10.1103/PhysRevB.29.6443

    Article  CAS  Google Scholar 

  27. Brommer P, Gähler F (2007) Potfit: effective potentials from ab initio data. Model Simul Mater Sci Eng 15:295–304. https://doi.org/10.1088/0965-0393/15/3/008

    Article  CAS  Google Scholar 

  28. Cheng YQ, Ma E, Sheng HW (2009) Atomic level structure in multicomponent bulk metallic glass. Phys Rev Lett 102:1–4. https://doi.org/10.1103/PhysRevLett.102.245501

    Article  CAS  Google Scholar 

  29. Sheng HW, Kramer MJ, Cadien A et al (2011) Highly optimized embedded-atom-method potentials for fourteen FCC metals. Phys Rev B Condens Matter Mater Phys 83:1–20. https://doi.org/10.1103/PhysRevB.83.134118

    Article  CAS  Google Scholar 

  30. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269. https://doi.org/10.1103/PhysRevB.49.14251

    Article  CAS  Google Scholar 

  31. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  32. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  33. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192. https://doi.org/10.1103/PhysRevB.16.1748

    Article  Google Scholar 

  34. Egami T, Billinge S (2012) Underneath the Bragg peaks, 2nd edn. Elsevier, New York

    Google Scholar 

  35. Kittel C (2004) Introduction to solid state physics, 8th edn. Wiley, Hoboken

    Google Scholar 

  36. Simmons G, Wang H (1977) Single crystal elastic constants and calculated aggregate properties. M.I.T Press, Cambridge

    Google Scholar 

  37. Dinsdale AT (1991) SGTE data for pure elements. CALPHAD: Comput Coupling Phase Diagr Thermochem 15:317–425

    Article  CAS  Google Scholar 

  38. Schaefer HE, Gugelmeier R, Schmolz M, Seeger A (1987) Positron lifetime spectroscopy and trapping at vacancies in aluminium. Mater Sci Forum 15–18:111–116. https://doi.org/10.4028/www.scientific.net/MSF.15-18.111

    Article  Google Scholar 

  39. Brandes EA, Brook GB (2013) Smithells metals reference book, 7th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  40. Lide DR (1998) CRC handbook of chemistry and physics, 79th edn. CRC Press, Florida

    Google Scholar 

  41. Villars P, Cenzual K (eds) (2007) Pearson’s crystal data, crystal structure database for inorganic compounds. ASM International, Materials Park, OH

    Google Scholar 

  42. Kalay YE, Chumbley LS, Kramer MJ, Anderson IE (2010) Local structure in marginal glass forming Al–Sm alloy. Intermetallics 18:1676–1682. https://doi.org/10.1016/j.intermet.2010.05.005

    Article  CAS  Google Scholar 

  43. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  44. Finney JL (1977) Modeling the structures of amorphous metals and alloys. Nature 267:192–193

    Article  Google Scholar 

  45. Zhang Y, Mattern N, Eckert J (2011) Atomic structure and transport properties of Cu50Zr45Al5 metallic liquids and glasses: molecular dynamics simulations. J Appl Phys 110:93506. https://doi.org/10.1063/1.3658252

    Article  CAS  Google Scholar 

  46. Lagogianni AE, Almyras G, Lekka CE et al (2009) Structural characteristics of CuxZr100−x metallic glasses by Molecular Dynamics Simulations. J Alloys Compd 483:658–661. https://doi.org/10.1016/j.jallcom.2008.07.211

    Article  CAS  Google Scholar 

  47. Duan G, Xu D, Zhang Q et al (2005) Molecular dynamics study of the binary Cu46Zr54 metallic glass motivated by experiments: glass formation and atomic-level structure. Phys Rev B Condens Matter Mater Phys 71:1–9. https://doi.org/10.1103/PhysRevB.71.224208

    Article  CAS  Google Scholar 

  48. Lu ZP, Li Y, Ng SC (2000) Reduced glass transition temperature and glass forming ability of bulk glass forming alloys. J Non Cryst Solids 270:103–114. https://doi.org/10.1016/S0022-3093(00)00064-8

    Article  CAS  Google Scholar 

  49. Turnbull D (1969) Under what conditions can a glass be formed? Contemp Phys 10:473–488. https://doi.org/10.1080/00107516908204405

    Article  CAS  Google Scholar 

  50. Wakasugi T, Rikuo O, Jiro F (1992) Glass-forming ability and crystallization tendency evaluated by the DTA method in the Na2O–B2O3–Al2O3 system. J Am Ceram Soc 75:3129–3132

    Article  CAS  Google Scholar 

  51. Lu ZP, Liu CT (2002) A new glass-forming ability criterion for bulk metallic glasses. Acta Mater 50:3501–3512. https://doi.org/10.1016/S1359-6454(02)00166-0

    Article  CAS  Google Scholar 

  52. Wu J, Pan Y, Li X, Wang X (2015) Microstructure evolution and mechanical properties of Nb-alloyed Cu-based bulk metallic glasses and composites. Mater Des. https://doi.org/10.1016/j.matdes.2015.03.013

    Article  Google Scholar 

  53. Li Y (2001) A relationship between glass-forming ability and reduced glass transition temperature near eutictic composition. Mater Trans 42:556–561

    Article  CAS  Google Scholar 

  54. Wu RI, Wilde G, Perepezko JH (2001) Glass formation and primary nanocrystallization in Al-base metallic glasses. Mater Sci Eng A 301:12–17. https://doi.org/10.1016/S0921-5093(00)01390-3

    Article  Google Scholar 

  55. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706. https://doi.org/10.1021/ac60131a045

    Article  CAS  Google Scholar 

  56. Shen Y (2016) The effect of spatial heterogeneities on nucleation kinetics in amorphous aluminum alloys. The University of Wisconsin, Madison

    Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF-DMREF under Grants DMR-1332851 and DMR-1728933. Work at GMU was supported by the NSF under Grant No. DMR-1611064. We acknowledge the Center for Computational Materials Science at the Institute for Materials Research, Tohoku University, for use of the SR16000 supercomputing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Szlufarska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bokas, G.B., Shen, Y., Zhao, L. et al. Synthesis of Sm–Al metallic glasses designed by molecular dynamics simulations. J Mater Sci 53, 11488–11499 (2018). https://doi.org/10.1007/s10853-018-2393-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2393-2

Keywords

Navigation