Skip to main content
Log in

One-pot synthesis of Mn3O4/graphitic carbon nanoparticles for simultaneous nanomolar detection of Pb(II), Cd(II) and Hg(II)

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, a facile one-step sucrose–nitrate decomposition method has been proposed to synthesis Mn3O4 nanoparticles (Mns)/graphitic carbon. The prepared material has been characterized by X-ray diffraction, Fourier transform infrared spectrometer, surface area analysis and transmission electron microscopy. The prepared Mns/graphitic carbon is drop-casted on glassy carbon electrode to allow the fabrication of electrochemical sensors for the simultaneous detection of Pb(II), Cd(II) and Hg(II) at nanomolar (nM) levels in aqueous solutions via differential pulse anodic stripping voltammetry. The proposed Mns/graphitic carbon sensors exhibit a wide linear range from 20 to 680 nM towards the simultaneous sensing of Cd(II), Pb(II) and Hg(II), and the corresponding limits of detection were found to be 0.48 × 10−11, 9.66 × 10−11 and 0.51 × 10−11 M, respectively. The practical application of the proposed sensor is evaluated within a real battery, industrial and chrome plating effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331

    Article  Google Scholar 

  2. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    Article  Google Scholar 

  3. Viyannalage LT, Bliznakov S, Dimitrov N (2008) Electrochemical method for quantitative determination of trace amounts of lead. Anal Chem 80:2042–2049

    Article  Google Scholar 

  4. World Health Organization (2011) World Health organization guidelines for drinking water quality, 4th edn. World Health Organization, Geneva, pp 389–395

    Google Scholar 

  5. Li Y, Jiang Y, Yan XP, Peng WJ, Wu YY (2002) A flow injection on-line multiplexed sorption preconcentration procedure coupled with flame atomic absorption spectrometry for determination of trace lead in water, tea, and herb medicines. Anal Chem 74:1075–1080

    Article  Google Scholar 

  6. Ye QY, Li Y, Jiang Y, Yan XP (2003) Determination of Trace Cadmium in Rice by Flow Injection On-Line Filterless Precipitation–Dissolution Preconcentration Coupled with Flame Atomic Absorption Spectrometry. J Agric Food Chem 51:2111–2114

    Article  Google Scholar 

  7. Yaman M (2005) The improvement of sensitivity in lead and cadmium determinations using flame atomic absorption spectrometry. Anal Biochem 339:1–8

    Article  Google Scholar 

  8. Karami H, Mousavi MF, Yamini Y, Shamsipur M (2004) On-line preconcentration and simultaneous determination of heavy metal ions by inductively coupled plasma-atomic emission spectrometry. Anal Chim Acta 509:89–94

    Article  Google Scholar 

  9. Linge KL (2005) Recent developments in trace element analysis by ICP-AES and ICP-MS with particular reference to geological and environmental samples. Geostand Geoanal Res 29:7–22

    Article  Google Scholar 

  10. Pramod G, Mruthyunjayachari CD, Ravikumar T, Bhuneshwar P, Alagar RK, Harish MNK, Musthafa OT (2015) Galvanic cell type sensor for soil moisture analysis. Anal Chem 87:7439–7445

    Article  Google Scholar 

  11. Pramod G, Kavita K, Manasa N, Mruthyunjayachari CD, Shambhulinga A, Alagar RK, Zahid MB, Ravikumar T, Shahid PS, Musthafa OT (2017) Redox active binary logic gate circuit for homeland security. Anal Chem 89:7893–7899

    Article  Google Scholar 

  12. Mishra RK, Nawaz MH, Hayat A, Nawaz MAH, Sharma V, Martya JL (2017) Electrospinning of graphene-oxide onto screen printed electrodes for heavy metal biosensor. Sens Actuators B 247:366–373

    Article  Google Scholar 

  13. Pokhrela LR, Ettore N, Jacobs ZL, Zarr A, Weir MH, Scheuerman PR, Kanel SR, Dubey B (2017) Novel carbon nanotube (CNT)-based ultrasensitive sensors for trace mercury(II) detection in water: a review. Sci Total Environ 574:1379–1388

    Article  Google Scholar 

  14. Huang H, Chen T, Liu X, Ma H (2014) Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials. Anal Chim Acta 852:45–54

    Article  Google Scholar 

  15. Lee S, Oh J, Kim D, Piao Y (2016) A sensitive electrochemical sensor using an iron oxide/graphene composite for the simultaneous detection of heavy metal ions. Talanta 160:528–536

    Article  Google Scholar 

  16. Wang N, Lin M, Dai H, Ma H (2016) Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine–mercury–thymine structure. Biosens Bioelectron 79:320–326

    Article  Google Scholar 

  17. Park MO, Noh HB, Park DS, Yoon JH, Shim YB (2017) Long-life heavy metal ions sensor based on graphene oxide-anchored conducting polymer. Electroanalysis 29:1521–4109

    Article  Google Scholar 

  18. Wang N, Dai H, Wang D, Ma H, Lin M (2017) Determination of copper ions using a phytic acid/polypyrrole nanowires modified glassy carbon electrode. Mater Sci Eng C 76:139–143

    Article  Google Scholar 

  19. Palanisamya S, Thangavelua K, Chen SM, Velusamy V, Chang MH, Chen TW, Al-Hemaid FMA, Ali MA (2017) Synthesis and characterization of polypyrrole decorated graphene/β-cyclodextrin composite for low level electrochemical detection of mercury(II) in water. Sens Actuators B 243:888–894

    Article  Google Scholar 

  20. Suherman AL, Ngamchuea K, Tanner EEL, Sokolov SV, Holter J, Young NP, Compton RG (2017) Electrochemical detection of ultratrace (picomolar) levels of Hg2 + using a silver nanoparticle-modified glassy carbon electrode. Anal Chem 89:7166–7173

    Article  Google Scholar 

  21. Skotadis E, Tsekenis G, Chatzipetrou M, Patsiouras L (2017) Heavy metal ion detection using DNAzyme-modified platinum nanoparticle networks. Sens Actuators B 239:962–969

    Article  Google Scholar 

  22. de Barros A, Constantino CJL, da Cruz NC, Bortoleto JRR, Ferreira M (2017) High performance of electrochemical sensors based on LbL films of gold nanoparticles, polyaniline and sodium montmorillonite clay mineral for simultaneous detection of metal ions. Electrochim Acta 235:700–708

    Article  Google Scholar 

  23. Deshmukh S, Kandasamy G, Upadhyay RK, Bhattacharya G, Banerjee D, Maity D, Deshusses MA, Roy SS (2017) Terephthalic acid capped iron oxide nanoparticles for sensitive electrochemical detection of heavy metal ions in water. J Electroanal Chem 788:91–98

    Article  Google Scholar 

  24. Dai H, Wang N, Wang D, Ma H, Lin M (2016) An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd(II) and Pb(II). Chem Eng J 299:150–155

    Article  Google Scholar 

  25. Wang L, Wu KL, Jiang BB (2014) Non-enzymatic electrochemical sensors for the detection of H2O2 based on Mn3O4 octahedron submicrostructures. IET Micro Nano Lett 9:736–740

    Article  Google Scholar 

  26. Hao Q, Wang J, Xu C (2014) Facile preparation of Mn3O4 octahedra and their long-term cycle life as an anode material for Li-ion batteries. J Mater Chem A 2:87–93

    Article  Google Scholar 

  27. Li JJ, Li L, Wu F, Zhang L, Liu XM (2013) Dispersion–precipitation synthesis of nanorod Mn3O4 with high reducibility and the catalytic complete oxidation of air pollutants. Catal Commun 31:52–56

    Article  Google Scholar 

  28. Si P, Dong XC, Chen P, Kim DH (2013) A hierarchically structured composite of Mn3O4/3D graphene foam for flexible nonenzymatic biosensors. J Mater Chem B 1:110–115

    Article  Google Scholar 

  29. Dubal DP, Dhawale DS, Salunkhe RR, Lokhande CD (2010) A novel chemical synthesis of Mn3O4 thin film and its stepwise conversion into birnessite MnO2 during super capacitive studies. J Electroanal Chem 647:60–65

    Article  Google Scholar 

  30. Zhu C, Sheng N, Akiyama T (2015) MnO nanoparticles embedded in a carbon matrix for a high performance Li ion battery anode. RSC Adv 5:21066–21073

    Article  Google Scholar 

  31. Li L, Guo Z, Du A, Liu H (2012) Rapid microwave-assisted synthesis of Mn3O4-graphene nanocomposite and its lithium storage properties. J Mater Chem 22:3600–3605

    Article  Google Scholar 

  32. Gu X, Yue J, Chen L, Liu S, Xu H, Yang J, Qian Y, Zhao X (2015) Coaxial MnO/N-doped carbon nanorods for advanced lithium-ion battery anodes. J Mater Chem A 3:1037–1041

    Article  Google Scholar 

  33. Murray J (1974) The surface chemistry of hydrous manganese dioxide. J Colloid Interface Sci 46:357–371

    Article  Google Scholar 

  34. Zou W, Han R, Chen Z, Jinghua Z, Shi J (2006) Kinetic study of adsorption of Cu (II) and Pb(II) from aqueous solutions using manganese oxide coated zeolite in batch mode. Colloids Surf A 279:238–246

    Article  Google Scholar 

  35. Nourifard F, Payehgadr M, Kalhor M, Nejadali A (2015) An electrochemical sensor for determination of Cd, Cu and Hg in water samples by modified carbon paste electrode base on a new Schiff base ligand. Electroanalysis 27:2479–2485

    Article  Google Scholar 

  36. Inczedy J (1976) Analytical applications of complex equilibria. Ellis Horwood, Halsted Press, New York

    Google Scholar 

  37. Chaiyo S, Mehmeti E, Zagar K, Siangproh W, Chailapakul O, Kalcher K (2016) Electrochemical sensors for the simultaneous determination of zinc, cadmium and lead using a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode. Anal Chim Acta 918:26–34

    Article  Google Scholar 

  38. Yi H, Mei P (2008) Determination of cadmium (II) using H2O2-oxidized activated carbon modified electrode. J Appl Electrochem 38:1623–1627

    Article  Google Scholar 

  39. Morales GR, Silva TR, Galicia L (2003) Carbon paste electrodes electrochemically modified with cyclodextrins. J Solid State Electrochem 7:355–360

    Article  Google Scholar 

  40. Wei Y, Gao C, Meng FL, Li HH, Wang L, Liu JH, Huang XJ (2012) SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II): An Interesting Favorable Mutual Interference. J Phys Chem C 116:1034–1041

    Article  Google Scholar 

  41. Li WJ, Yao XZ, Guo Z, Liu JH, Huang XJ (2015) Fe3O4 with novel nanoplate-stacked structure: surfactant-free hydrothermal synthesis and application in detection of heavy metal ions. J Electroanal Chem 749:75–82

    Article  Google Scholar 

  42. Gao C, Yu XY, Xu RX, Liu JH, Huang XJ (2012) AlOOH-reduced graphene oxide nanocomposites: one-pot hydrothermal synthesis and their enhanced electrochemical activity for heavy metal ions. ACS Appl Mater Interfaces 4:4672–4682

    Article  Google Scholar 

  43. Wei Y, Yang R, Yu XY, Wang L, Liu JH, Huang XJ (2012) Stripping voltammetry study of ultra-trace toxic metal ions on highly selectively adsorptive porous magnesium oxide nanoflowers. Analyst 137:2183–2191

    Article  Google Scholar 

  44. Li X, Wen H, Fu Q, Peng D, Yu J, Zhang Q, Huang X (2016) Morphology-dependent NiO modified glassy carbon electrode surface for lead(II) and cadmium(II) detection. Appl Surf Sci 363:7–12

    Article  Google Scholar 

  45. Kadara RO, Jenkinson N, Banks CE (2009) Disposable bismuth oxide screen printed electrodes for the high throughput screening of heavy metals. Electroanalysis 21:2410–2414

    Google Scholar 

  46. Liu X, Li Z, Ding R, Ren B, Li Y (2016) A nanocarbon paste electrode modified with nitrogen doped grapheme for square wave anodic stripping voltammetric determination of trace lead and cadmium. Microchim Acta 183:709–714

    Article  Google Scholar 

Download references

Acknowledgements

SA (Ashoka S) greatly thanks Science and Engineering Research Board (SERB, Project No. ECR/2017/000743) Government of India, for financial support to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashoka Siddaramanna.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adarakatti, P.S., Gangaiah, V.K., Banks, C.E. et al. One-pot synthesis of Mn3O4/graphitic carbon nanoparticles for simultaneous nanomolar detection of Pb(II), Cd(II) and Hg(II). J Mater Sci 53, 4961–4973 (2018). https://doi.org/10.1007/s10853-017-1896-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1896-6

Keywords

Navigation