Skip to main content
Log in

Synthesis and characterization of aluminum diboride products using 27Al, 11B NMR and ab initio studies

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Understanding different bonding environments in various metal borides provides insight into their structures and physical properties. Polycrystalline aluminum diboride (AlB2) samples have been synthesized and compared both with a commercial sample and with the literature. One issue that arose is the relative ease with which boron-rich and aluminum deficient phases of aluminum borides can be presented in AlB2. Here, we report 27Al, 11B nuclear magnetic resonance (NMR) spectroscopy and first-principles calculations on AlB2 in order to shed light on these different bonding environments at the atomic level and compare the structural and electronic properties of the products of different preparations. Along with the aforementioned, the present study also takes an in-depth look at the nature of the 11B and 27Al nuclear spin–lattice relaxation recovery data for the AlB2 and other superhard materials. The nuclear spin–lattice relaxation has been measured for a static sample and with magic-angle spinning. The combination of NMR and band structure calculations highlights the synthetic challenges with superhard materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Kayhan M, Hildebrandt E, Frotscher M, Senyshyn A, Hofmann K, Alff L, Albert B (2012) Neutron diffraction and observation of superconductivity for tungsten borides, WB and W2B4. Solid State Sci 14:1656–1659

    Article  Google Scholar 

  2. Cheng X-Y, Chen X-Q, Li D-Z, Li Y-Y (2014) Computational materials discovery: the case of the W–B system. Acta Crystallogr C70:85–103

    Google Scholar 

  3. Cheng X, Zhang W, Chen X-Q, Niu H, Liu P, Du K, Liu G, Li D, Cheng H-M, Ye H, Li Y (2013) Interstitial-boron solution strengthened WB3+x. Appl Phys Lett 103:171903

    Article  Google Scholar 

  4. Lech AT, Turner CL, Mohammadi R, Tolbert SH, Kaner RB (2015) Structure of superhard tungsten tetraboride: a missing link between MB2 and MB12 higher borides. Proc Natl Acad Sci USA 112:3223–3228

    Article  Google Scholar 

  5. Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J (2001) Superconductivity at 39 K in magnesium diboride. Nature 410:63–64

    Article  Google Scholar 

  6. Chung HY, Weinberger MB, Levine JB, Cumberland RW, Kavner A, Yang J-M, Tolbert SH, Kaner RB (2007) Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science 316:436–439

    Article  Google Scholar 

  7. Turner CL, Taylor RE, Kaner RB (2015) 10B and 11B NMR study of elemental boron. J Phys Chem C 119:13807–13813

    Article  Google Scholar 

  8. Koumoulis D, Turner CL, Taylor RE, Kaner RB (2016) 11B NMR spectral and nuclear spin–lattice relaxation analyses of ReB2. J Phys Chem C 10:2901–2907

    Article  Google Scholar 

  9. Turner CL, Zujovic Z, Koumoulis D, Taylor RE, Kaner RB (2017) 11B NMR study of WB2. J Phys Chem C 121(2):1315–1320

    Article  Google Scholar 

  10. Burdett JK, Canadell E, Miller GJ (1986) Electronic structure of transition-metal borides with the AlB2 structure. J Am Chem Soc 108:6561–6568

    Article  Google Scholar 

  11. Kopp JP, Barnes RG (1971) Nuclear magnetic resonance of 11B and 27Al in aluminum diboride. J Chem Phys 51:1840–1841

    Article  Google Scholar 

  12. Eastman M (1999) Examples of Hartmann–Hahn match conditions for CP/MAS between two half-integer quadrupolar nuclei. J Magn Reson 139:98–108

    Article  Google Scholar 

  13. Baek SH, Suh BJ, Pavarini E, Borsa F, Barnes RG, Bud’ko SL, Canfield PC (2002) NMR spectroscopy of the normal and superconducting states of MgB2 and comparison to AlB2. Phys Rev B 66:104510

    Article  Google Scholar 

  14. Papavassiliou G, Pissas M, Karayanni M, Fardis M, Koutandos S, Prassides K (2002) 11B and 27Al NMR spin–lattice relaxation and Knight shift of Mg1-xAlxB2: evidence for an anisotropic Fermi surface. Phys. Rev. B 66:140514(R)

    Article  Google Scholar 

  15. Pavarini E, Baek SH, Suh BJ, Borsa F, Bud’ko SL, Canfield PC (2003) NMR relaxation rates and Knight shifts in MgB2 and AlB2: theory versus experiments. Supercond Sci Technol 16:147–151

    Article  Google Scholar 

  16. Burkhardt U, Gurin V, Haarmann F, Borrmann H, Schnelle W, Yaresko A, Grin Y (2004) On the electronic and structural properties of aluminum diboride Al0.9B2. J Solid State Chem 117:389–394

    Article  Google Scholar 

  17. Choi YJ, Lu J, Sohn HY, Fang ZZ, Kim C, Bowman RC Jr, Hwang S-J (2011) Reaction mechanisms in the Li3AlH6/LiBH4 and Al/LiBH4 systems for reversible hydrogen storage. Part 2: solid-state NMR studies. J Phys Chem C 115:6048–6056

    Article  Google Scholar 

  18. Sevastyanova LG, Gulish OK, Stupnikov VA, Genchel VK, Kravchenko OV, Bulychev BM, Lunin RA, Tarasov VP (2012) Structure and properties of solid solutions in the Mg–Al–B system. Cent Eur J Phys 10:189–196

    Google Scholar 

  19. Bielecki A, Burum DP (1995) Temperature dependence of 207Pb MAS spectra of solid lead nitrate. An accurate, sensitive thermometer for variable-temperature MAS. J Magn Reson A 116:215–220

    Article  Google Scholar 

  20. Neue G, Dybowski C (1997) Determining temperature in a magic-angle spinning probe using the temperature dependence of the isotropic chemical shift of lead nitrate. Solid State NMR 7:333–336

    Article  Google Scholar 

  21. Beckmann PA, Dybowski C (2000) A thermometer for nonspinning solid-state NMR spectroscopy. J Magn Reson 146:379–380

    Article  Google Scholar 

  22. Jaeger C, Hemmann F (2014) EASY: a simple tool for simultaneously removing background, deadtime and acoustic ringing in quantitative NMR spectroscopy—part I: basic principle and applications. Solid State NMR 57–58:22–28

    Article  Google Scholar 

  23. Fenzke D, Freude D, Frohlich T, Haase J (1984) NMR intensity measurements of half-integer quadrupole nuclei. Chem Phys Lett 111:171–175

    Article  Google Scholar 

  24. Mann P, Klinowski J, Trokiner A, Zanni H, Papon P (1988) Selective and non-selective NMR excitation of quadrupolar nuclei in the solid state. Chem Phys Lett 151:143–160

    Article  Google Scholar 

  25. Ronemus AD, Vold RL, Vold RR (1986) Deuterium quadrupole echo NMR spectroscopy II. Artifact suppression. J Magn Reson 70:416–426

    Google Scholar 

  26. Farrar TC, Becker ED (1971) Pulse and Fourier transform NMR: introduction to theory and methods. Academic Press, New York

    Google Scholar 

  27. Yesinowski JP (2015) Finding the true spin–lattice relaxation time for half-integral nuclei with nonzero quadrupole couplings. J Magn Reson 252:135–144

    Article  Google Scholar 

  28. Harris RK, Becker ED, de Menezes SMC, Goodfellow R, Granger P (2001) NMR nomenclature, nuclear spin properties, and conventions for chemical shifts (IUPAC recommendations 2001). Pure Appl Chem 73:1795–1818

    Article  Google Scholar 

  29. Bishop M, Shahid N, Yang J, Barron AR (2004) Determination of the mode and efficacy of the cross-linking of guar by borate using MAS 11B NMR of borate cross-linked guar in combination with solution 11B NMR of model systems. Dalton Trans 17:2621–2624

    Article  Google Scholar 

  30. Bezhenar NP, Bozhko SA, Belyavina NN, Markiv VY, Shul’zhenko AA (2007) Кpиcтaлличecкaя cтpyктypa дибopидa aлюминия в кoмпoзитax КHБ, пoлyчeнныx peaкциoнным cпeкaниeм пpи выcoкиx дaвлeнияx Dopov. Nats Akad Nauk Ukr 9:77–81

    Google Scholar 

  31. Blaha P, Schwarz K, Madsen GK, Kvasnicka D, Luitz J (2001) WIEN2 k: an augmented plane wave + local orbitals program for calculating crystal properties. Tech Univ Wien, Austria. ISBN 3-9501031-1-2

    Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  Google Scholar 

  33. Tsiskarishvili GP, Lunström T, Tegenfelt J, Dolidze TV, Tsagareishvili GV (1991) Isotope effect in β-rhombohedral boron. In: AIP Conference Proceedings, pp 231–280

  34. Lee D, Bray PJ, Aselage TL (1999) The NQR and NMR studies of icosahedral borides. J Phys Condens Matter 11:4435–4450

    Article  Google Scholar 

  35. Sagalyn PL, Hofmann JA (1962) Nuclear magnetic resonance in metallic single crystals. Phys Rev 127:68–71

    Article  Google Scholar 

  36. Shyu W-M, Das TP, Gaspari GD (1966) Direct and core-polarization contributions to the Knight shift in metallic aluminum. Phys Rev 152:270–278

    Article  Google Scholar 

  37. Loa I, Kunc K, Syassen K, Bouvier P (2002) Crystal structure and lattice dynamics of AlB2 under pressure and implications for MgB2. Phys Rev B 66:134101

    Article  Google Scholar 

  38. Massiot D, Farnan I, Gautier N, Trumeau D, Trokiner A, Coutures JP (1995) 71Ga and 69Ga nuclear magnetic resonance study of β-Ga2O3: resolution of four- and six-fold coordinated Ga sites in static conditions. Solid State NMR 4:241–248

    Article  Google Scholar 

  39. Andrew ER, Tunstall DP (1961) Spin–lattice relaxation in imperfect cubic crystals and in non-cubic crystals. Proc Phys Soc 78:1–11

    Article  Google Scholar 

  40. Jung JK, Baek SH, Borsa F, Bud’ko SL, Lapertot G, Canfield PC (2001) 11B NMR and relaxation in the MgB2 superconductor. Phys Rev B 64:012514

    Article  Google Scholar 

  41. Lue CS, Tao YF, Su TH (2008) Comparative NMR investigation of the re-based borides. Phys Rev B 78:033107

    Article  Google Scholar 

  42. Ambrosini B (1999) An nmr study of anomalous rare-earth and actinide intermetalic compounds. Doctoral Dissertation (Diss. ETH No. 13031), Swiss Federal Institute of Technology, Zurich

  43. Woesner DE, Timkin HKC (1990) The influence of MAS on spin–lattice relaxation curves and nuclear spin excitation of half-integer spin quadrupolar nuclei in solids. J Magn Res 90:411–419

    Google Scholar 

  44. Yesinowski JP, Ladouceur HD, Purdy AP, Miller JB (2010) Electrical and ionic conductivity effects on magic-angle spinning nuclear magnetic resonance parameters of CuI. J Chem Phys 133:234509

    Article  Google Scholar 

  45. Spokas JJ, Slichter CP (1959) Nuclear relaxation in aluminum. Phys Rev 113:1462–1472

    Article  Google Scholar 

  46. Andrew ER, Hinshaw WS, Tiffen RS (1974) The anomalous 27Al NMR second moment in metallic aluminum. J Phys F Metal Phys 4:L215–L218

    Article  Google Scholar 

  47. Wikner EG, Blumberg WE, Hahn EL (1960) nuclear quadrupole spin–lattice relaxation in alkali halides. Phys Rev 118:631–639

    Article  Google Scholar 

  48. Van Kranendonk J (1954) Theory of quadrupolar nuclear spin–lattice relaxation. Physica 20:781–800

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation Grants DMR-9975975 (R.E.T.), DMR-1506860 (R.B.K.) and ShanghaiTech University Start-up Funding. The authors would like to thank Georgiy Akopov for assistance with flux growth.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dimitrios Koumoulis or R. E. Taylor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turner, C.L., Koumoulis, D., Li, G. et al. Synthesis and characterization of aluminum diboride products using 27Al, 11B NMR and ab initio studies. J Mater Sci 53, 3309–3322 (2018). https://doi.org/10.1007/s10853-017-1727-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1727-9

Keywords

Navigation