Skip to main content
Log in

Synthesis of magnetic FeWO4 nanoparticles and their decoration of WS2 nanotubes surface

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Owing to their unique properties such as mechanical, optical, magnetic, nanomaterials attracted a great interest over the last two decades. Inorganic nanotubes, e.g. WS2, make an important class of nanomaterials with numerous potential applications. In the current work, a new synthetic strategy is developed to decorate the surface of WS2 nanotubes with FeWO4 nanoparticles. The FeWO4 nanoparticles were produced by first depositing amorphous iron oxide film onto the WS2 nanotubes’ surface and, subsequently, high-temperature annealing (600 °C). Careful analysis by electron microscopy; X-ray diffraction and other techniques were carried out. Based on these analyses, the growth mechanism of the hybrid nanostructures was elucidated. Magnetic measurements were employed to shed light on the magnetic behavior of the hybrid nanostructures. The orientation and position of the WS2 nanotubes decorated with the FeWO4 nanoparticles could be partially affected by applying a magnetic field using non-viscous solvents, like ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Xu Z, Shen C, Hou Y et al (2009) Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem Mater 21:1778–1780

    Article  Google Scholar 

  2. Hui C, Shen C, Yang T et al (2008) Large-scale Fe3O4 nanoparticles soluble in water synthesized by a facile method. J Phys Chem C 112:11336–11339

    Article  Google Scholar 

  3. Cassagneau T, Mallouk TE, Fendler JH (1998) Layer-by-layer assembly of thin film zener diodes from conducting polymers and CdSe nanoparticles. J Am Chem Soc 120:7848–7859

    Article  Google Scholar 

  4. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  Google Scholar 

  5. Zhang J, Zhang Y, Yan J-Y et al (2012) A novel synthesis of star-like FeWO4 nanocrystals via a biomolecule-assisted route. J Nanoparticle Res 14:1–10

    Google Scholar 

  6. Cao X, Chen Y, Jiao S et al (2014) Magnetic photocatalysts with a p–n junction: Fe3O4 nanoparticle and FeWO4 nanowire heterostructures. Nanoscale 6:12366–12370

    Article  Google Scholar 

  7. Qian J, Peng Z, Wu D, Fu X (2014) FeWO4/FeS core/shell nanorods fabricated by thermal evaporation. Mater Lett 122:86–89

    Article  Google Scholar 

  8. Guo J, Zhou X, Lu Y et al (2012) Monodisperse spindle-like FeWO4 nanoparticles: controlled hydrothermal synthesis and enhanced optical properties. J Solid State Chem 196:550–556

    Article  Google Scholar 

  9. Yu F, Cao L, Huang J, Wu J (2013) Effects of pH on the microstructures and optical property of FeWO4 nanocrystallites prepared via hydrothermal method. Ceram Int 39:4133–4138

    Article  Google Scholar 

  10. Rajagopal S, Nataraj D, Khyzhun OY et al (2010) Hydrothermal synthesis and electronic properties of FeWO4 and CoWO4 nanostructures. J Alloys Compd 493:340–345

    Article  Google Scholar 

  11. Zhou Y-X, Yao H-B, Zhang Q et al (2009) Hierarchical FeWO4 microcrystals: solvothermal synthesis and their photocatalytic and magnetic properties. Inorg Chem 48:1082–1090

    Article  Google Scholar 

  12. He G-L, Chen M-J, Liu Y-Q et al (2015) Hydrothermal synthesis of FeWO4-graphene composites and their photocatalytic activities under visible light. Appl Surf Sci 351:474–479

    Article  Google Scholar 

  13. Obermayer HA, Dachs H, Schröcke H (1973) Investigations concerning the coexistence of two magnetic phases in mixed crystals (Fe, Mn) WO4. Solid State Commun 12:779–784

    Article  Google Scholar 

  14. Almeida MAP, Cavalcante LS, Morilla-Santos C et al (2012) Electronic structure and magnetic properties of FeWO4 nanocrystals synthesized by the microwave-hydrothermal method. Mater Charact 73:124–129

    Article  Google Scholar 

  15. Tenne R, Margulis L, Genut M, Hodes G (1992) Polyhedral and cylindrical structures of tungsten disulphide. Nature 360:444–446

    Article  Google Scholar 

  16. Margulis L, Salitra G, Tenne R, Talianker M (1993) Nested fullerene-like structures. Nature 365:113–114

    Article  Google Scholar 

  17. Feldman Y, Wasserman E, Srolovitz DJ, Tenne R (1995) High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267:222–225

    Article  Google Scholar 

  18. Tenne R (2006) Inorganic nanotubes and fullerene-like nanoparticles. J Mater Res 21:2726–2743

    Article  Google Scholar 

  19. Bar-Sadan M, Kaplan-Ashiri I, Tenne R (2007) Inorganic fullerenes and nanotubes: wealth of materials and morphologies. Eur Phys J Spec Top 149:71–101

    Article  Google Scholar 

  20. Levi R, Bitton O, Leitus G et al (2013) Field-effect transistors based on WS2 nanotubes with high current-carrying capacity. Nano Lett 13:3736–3741

    Article  Google Scholar 

  21. Levi R, Garel J, Teich D et al (2015) Nanotube electromechanics beyond carbon: the case of WS2. ACS Nano 9:12224–12232

    Article  Google Scholar 

  22. Olivas A, Villalpando I, Sepúlveda S et al (2007) Synthesis and magnetic characterization of nanostructures N/WS2, where N = Ni, Co and Fe. Mater Lett 61:4336–4339

    Article  Google Scholar 

  23. Yadgarov L, Choi CL, Sedova A et al (2014) Dependence of the absorption and optical surface plasmon scattering of MoS2 nanoparticles on aspect ratio, size, and media. ACS Nano 8:3575–3583

    Article  Google Scholar 

  24. Polyakov AY, Yadgarov L, Popovitz-Biro R et al (2014) Decoration of WS2 nanotubes and fullerene-like MoS2 with gold nanoparticles. J Phys Chem C 118:2161–2169

    Article  Google Scholar 

  25. Tsverin Y, Popovitz-Biro R, Feldman Y et al (2012) Synthesis and characterization of WS2 nanotube supported cobalt catalyst for hydrodesulfurization. Mater Res Bull 47:1653–1660

    Article  Google Scholar 

  26. Komarneni MR, Yu Z, Burghaus U et al (2012) Characterization of Ni-coated WS2 nanotubes for hydrodesulfurization catalysis. Isr J Chem 52:1053–1062

    Article  Google Scholar 

  27. Dai Y, Yan XH, Wu X et al (2016) Facile self-assembly of AgNPs/WS2 nanocomposites with enhanced electrochemical properties. Mater Lett 173:203–206

    Article  Google Scholar 

  28. Dai Y, Wu X, Sha D et al (2016) Facile self-assembly of Fe3O4 nanoparticles@ WS2 nanosheets: a promising candidate for supercapacitor electrode. Electron Mater Lett 12:789–794

    Article  Google Scholar 

  29. Shahar C, Zbaida D, Rapoport L et al (2009) Surface functionalization of WS2 fullerene-like nanoparticles. Langmuir 26:4409–4414

    Article  Google Scholar 

  30. Zak A, Ecker LS, Efrati R et al (2011) Large-scale synthesis of WS2 multiwall nanotubes and their dispersion, an update. Sens Transducers 12:1–10

    Article  Google Scholar 

  31. Krause M, Mücklich A, Zak A et al (2011) High resolution TEM study of WS2 nanotubes. Phys Status Solidi 248:2716–2719

    Article  Google Scholar 

  32. Khusrhid H, Porshokouh ZN, Phan M-H et al (2014) Impacts of surface spins and inter-particle interactions on the magnetism of hollow γ-Fe2O3 nanoparticles. J Appl Phys 115:17E131

    Article  Google Scholar 

  33. Coey JMD (1978) Amorphous magnetic order. J Appl Phys 49:1646–1652

    Article  Google Scholar 

  34. Leslie-Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8:1770–1783

    Article  Google Scholar 

  35. Mørup S (1994) Superparamagnetism and spin glass ordering in magnetic nanocomposites. EPL (Europhysics Lett) 28:671–676

    Article  Google Scholar 

  36. Mørup S, Tronc E (1994) Superparamagnetic relaxation of weakly interacting particles. Phys Rev Lett 72:3278–3281

    Article  Google Scholar 

  37. Huang F, Lu X, Xu T et al (2012) Multiferroic properties of Co and Nd co-substituted Bi5Ti3FeO15 thin films. Thin Solid Films 520:6489–6492

    Article  Google Scholar 

  38. Cullity BD, Graham CD (2009) Introduction to magnetic materials, 2nd edn. Wiley, New york

    Google Scholar 

  39. Huang F, Wang Z, Lu X et al (2013) Peculiar magnetism of BiFeO3 nanoparticles with size approaching the period of the spiral spin structure. Sci Rep 3:2907

    Google Scholar 

  40. Hauguel T, Pogossian SP, Dekadjevi DT et al (2012) Driving mechanism of exchange bias and magnetic anisotropy in multiferroic polycrystalline BiFeO3/permalloy bilayers. J Appl Phys 112:093904

    Article  Google Scholar 

  41. Zhang Q, Murray P, You L et al (2016) Magnetic fingerprint of interfacial coupling between CoFe and nanoscale ferroelectric domain walls. Appl Phys Lett 109:082906

    Article  Google Scholar 

  42. Meiklejohn WH, Bean CP (1957) New magnetic anisotropy. Phys Rev 102:1413–1414

    Article  Google Scholar 

  43. Nogués J, Schuller IK (1999) Exchange bias. J Magn Magn Mater 192:203–232

    Article  Google Scholar 

  44. Hu H, Larson RG (2006) Marangoni effect reverses coffee-ring depositions. J Phys Chem B 110:7090–7094

    Article  Google Scholar 

  45. Kaplan-Ashiri I, Cohen SR, Gartsman K et al (2006) On the mechanical behavior of WS2 nanotubes under axial tension and compression. Proc Natl Acad Sci USA 103:523–528

    Article  Google Scholar 

  46. Naffakh M, Marco C, Gómez MA et al (2009) Use of inorganic fullerene-like WS2 to produce new high-performance polyphenylene sulfide nanocomposites: role of the nanoparticle concentration. J Phys Chem B 113:10104–10111

    Article  Google Scholar 

  47. Zohar E, Baruch S, Shneider M et al (2011) The effect of WS2 nanotubes on the properties of epoxy-based nanocomposites. J Adhes Sci Technol 25:1603–1617

    Article  Google Scholar 

Download references

Acknowledgement

We are grateful to Prof. Igor Lubomirsky (Weizmann Institute) for the help with the interpretation of the results. We are also grateful to Dr. Vlad Brumfeld for the assistance with the X-ray tomography analysis. This work was supported by the Israel National Nano-Initiative, the Israel Science Foundation (Grant 265/12), H. Perlman Foundation and the Irving and Azelle Waltcher Foundation in honor of Prof. M. Levy. The electron microscopy work was performed at the Irving and Cherna Moskowitz Center for Nano and BioNano Imaging (Weizmann Institute).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reshef Tenne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedova, A., Leitus, G., Feldman, Y. et al. Synthesis of magnetic FeWO4 nanoparticles and their decoration of WS2 nanotubes surface. J Mater Sci 52, 6376–6387 (2017). https://doi.org/10.1007/s10853-017-0871-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0871-6

Keywords

Navigation