Skip to main content
Log in

Co x Ni4−x Sb12−y Sn y skutterudites: processing and thermoelectric properties

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

N-type and p-type skutterudite samples with the composition Co x Ni4−x Sb12−y Sn y were synthesized with composition range 0 < x < 2 and 3 < y < 5. Samples were pre-processed by solidification into ingots. Skutterudite phase formation was achieved by mechanical alloying the crushed ingots. The milled powders were consolidated to dense pellets by hot pressing. Thermoelectric measurements showed limited high-temperature performance below 400 °C. Skutterudite decomposition above 250 °C was detrimental to Seebeck coefficient. The thermoelectric transport properties can be tuned by varying the Co and Sn level. The lowest lattice thermal conductivity measured was 1.0 W m−1 K−1 for the Co level of 1.5. The Seebeck coefficient was positive for Co levels >0.8 and negative otherwise. Seebeck coefficients were low, ranging from −40 to 58 µV K−1. The combination of transmission electron microscopy with electron energy loss spectroscopy and powder X-ray diffraction established that Sn can substitute on 2a and 24g sites in the skutterudite structure. Due to the low Seebeck coefficients, the alloys exhibited low figure of merits (ZT) <0.05.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Sherman B, Heikes R, Ure R (1960) Calculation of efficiency of thermoelectric devices. J Appl Phys 31:1–16

    Article  Google Scholar 

  2. Nolas G, Morelli D, Tritt T (1999) Skutterudites: a phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annu Rev Mater Sci 29:89–116

    Article  Google Scholar 

  3. Ackermann J, Wold A (1977) The preparation and characterization of the cobalt skutterudites CoP3, CoSb3, CoAs3. J Phys Chem Solids 38:1013–1016

    Article  Google Scholar 

  4. Lyons A, Gruska R, Case C, Subbarao S, Wold A (1978) The preparation and characterization of some skutterudite related compounds. Mater Res Bull 13:125–128

    Article  Google Scholar 

  5. Morelli D, Meisner G, Chen B, Hu S, Uher C (1997) Cerium filling and doping of cobalt triantimonide. Phys Rev B 56:7376–7383

    Article  Google Scholar 

  6. Fleurial J, Caillat T, Borshchevsky A (1997) Skutterudites: an update. In: Proceedings of the XVI international conference on thermoelectrics, 26–29 August 1997

  7. Rull-Bravo M, Moure A, Fernandez JF, Martin-Gonzalez M (2015) Skutterudites as thermoelectric materials: revisited. RSC Adv 5:41653

    Article  Google Scholar 

  8. Aleksandrov KS, Beznosikov BV (2007) Crystal chemistry and prediction of compounds with a structure of skutterudite type. Crystallogr Rep 52:28–36

    Article  Google Scholar 

  9. Dong Y, Puneet P, Tritt T, Martin J, Nolas G (2012) High temperature thermoelectric properties of p-type skutterudites BaxYbyCo4-zFezSb12. J Appl Phys 112:083718

    Article  Google Scholar 

  10. Eilertsen J, Rouvimov S, Subramanian M (2012) Rattler-seeded InSb nanoinclusions from metastable indium-filled InCoSb skutterudites for high-performance thermoelectrics. Acta Mater 60:2178–2185

    Article  Google Scholar 

  11. Nolas G, Slack G, Morelli D, Tritt T, Ehrlich A (1996) The effect of rare earth filling on the lattice thermal conductivity of skutterudites. J Appl Phys 79:4002–4008

    Article  Google Scholar 

  12. Chen L, Tang X, Goto T, Hirai T (2000) Synthesis of filled skutterudite compounds: BayFexCo4-xSb12. J Mater Res 15:2276–2279

    Article  Google Scholar 

  13. Qiu P, Yang J, Liu R, Shi X, Huang X, Snyder G, Zhang W, Chen L (2011) High-temperature electrical and thermal transport properties of fully filled skutterudites RFe4Sb12 (R = Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb). J Appl Phys 109:063713

    Article  Google Scholar 

  14. Li H, Tang X, Zhang Q, Uher C (2009) High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. App Phys Lett 94:102114

    Article  Google Scholar 

  15. Shi X, Yang J, Salvador J, Chi M, Cho J, Wang H, Bai S, Yang J, Zhang W, Chen L (2011) Multi-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc 133:7837–7846

    Article  Google Scholar 

  16. Zhang L, Grytsiv A, Rogl P, Bauer E, Zehetbauer M (2009) High thermoelectric performance of triple-filled n-type skutterudites (Sr, Ba, Yb)yCo4Sb12. J Phys D Appl Phys 42:225405

    Article  Google Scholar 

  17. Rogl G, Grytsiv A, Rogl P, Peranio N, Bauer E, Zehetbauer M, Eibl O (2014) n-Type skutterudites (R, Ba, Yb)yCo4Sb12 (R = Sr, La, Mn, DD, SrMm, SrDD) approaching ZT = 2.0. Acta Mater 63:30–43

    Article  Google Scholar 

  18. Tang X, Zhang Q, Chen L, Goto T, Hirai T (2005) Synthesis and thermoelectric properties of p-type and n-type filled skutterudites RyMxCo4-xSb12. J Appl Phys 97:093712

    Article  Google Scholar 

  19. Rogl G, Grystiv A, Rogl P, Bauer E, Zehetbauer M (2011) A new generation of p-type didymium skutterudites with high ZT. Intermetallics 19:546–555

    Article  Google Scholar 

  20. Rogl G, Grytsiv A, Rogl P, Bauer E, Kerber MB, Zehetbauer M, Puchegger S (2010) Multifilled nanocrystalline p-type didymium—skutterudites with ZT > 1.2. Intermetallics 18:2435–2444

    Article  Google Scholar 

  21. Chi H, Kim H, Thomas J, Su X, Stackhouse S, Kaviany M, Van der Ven A, Tang X, Uher C (2012) Configuring pnictogen rings in skutterudites for low phonon conductivity. Phys Rev B 86:195209

    Article  Google Scholar 

  22. Bauer E, Berger St, Della Mea M, Hilscher G, Michor H, Paul Ch (2003) Filled skutterudites: formation, ground state properties and thermoelectric features. Acta Phys Pol B 34:595–608

    Google Scholar 

  23. Korenstein R, Soled S, Wold A, Collin G (1977) Preparation and characterization of the skutterudite-related phases CoGe1.5S1.5 and CoGe1.5Se1.5. Inorg Chem 16:2344–2346

    Article  Google Scholar 

  24. Dong Y, Wei K, Nolas GS (2013) Transport properties of partially filled skutterudite derivatives Ce0.13Co4Ge6Se6 and Yb0.14Co4Ge6Se6. Phys Rev B 87:195203

    Article  Google Scholar 

  25. Grytsiv A, Rogl P, Berger St, Paul Ch, Michor H, Bauer E, Hilscher G, Godart C, Knoll P, Musso M, Lottermoser W, Saccone A, Ferro R, Roisnel T, Noel H (2002) A novel skutterudite phase in the Ni-Sb-Sn system: phase equilibria and physical properties. J Phys Condens Matter 14:7017–7090

    Article  Google Scholar 

  26. Berger St, Paul Ch, Michor H, Bauer E, Hilscher G, Grytsiv A, Rogl P (2002) Crystal structure and thermoelectric properties of novel skutterudite EpyNi4Sb12-xSnx with Ep = Sn, Eu, and Yb. In: 21st International conference on thermoelectrics, vol 2. pp 48–51

  27. Zevalkink A, Star K, Aydemir U, Snyder J, Fleurial J-P, Bux S, Vo T, von Allmen P (2015) Electronic structure and thermoelectric properties of pnictogen-substituted ASn1.5Te1.5 (A = Co, Rh, Ir) skutterudites. J Appl Phys 118:035107

    Article  Google Scholar 

  28. Hui S, Nielsen M, Homer M, Medlin D, Tobola J, Salvador J, Heremans J, Pipe K, Uher C (2014) Influence of substituting Sn for Sb on the thermoelectric transport properties of CoSb3-based skutterudites. J Appl Phys 115:103704

    Article  Google Scholar 

  29. Mishra R, Kroupa A, Terzieff P, Ipser H (2012) Thermochemistry of liquid Ni-Sb-Sn alloys. Thermochim Acta 536:68–73

    Article  Google Scholar 

  30. Mishra R, Kroupa A, Zemanova A, Ipser H (2013) Phase equilibria in the Sn-rich corner of the Ni-Sb-Sn system. J Electron Mater 42:646–653

    Article  Google Scholar 

  31. Mackey J, Dynys F, Sehirlioglu A (2014) Uncertainty analysis of common Seebeck and electrical resistivity measurement systems. Rev Sci Instrum 85:085119

    Article  Google Scholar 

  32. May A, Snyder J (2012) Introduction to modeling thermoelectric transport at high temperatures. Materials Preparation and Characterization in Thermoelectrics, Section 1. CRC Press, Boca Raton, p 11

  33. Fu L, Yang J, Xiao Y, Peng J, Liu M, Luo Y, Li G (2013) AgSbTe2 nanoinclusion in Yb0.2Co4Sb12 for high performance thermoelectrics. Intermetallics 43:79–84

    Article  Google Scholar 

  34. Cho J, Ye Z, Tessema M, Waldo R, Salvador J, Yang J, Cai W, Wang H (2012) Thermoelectric properties of p-type skutterudites YbxFe3.5Ni0.5Sb12 (0.8 < x < 1). Acta Mater 60:2104–2110

    Article  Google Scholar 

  35. Qiu Y, Xi L, Shi X, Qiu P, Zhang W, Chen L, Salvador J, Cho J, Yang J, Chien Y, Chen S, Tang Y, Snyder J (2013) Charge-compensated compound defects in Ga-containing thermoelectric skutterudites. Adv Funct Mater 23:3194–3203

    Article  Google Scholar 

  36. Joo G, Shin D, Kim I (2014) Thermoelectric properties of double-filled p-type La1-zYbzFe4-xCoxSb12 skutterudites. J Electron Mater 44:1383–1387

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ben Kowalski, Tom Sabo, Serene Farmer, Ray Babuder, and Dereck Johnson from NASA Glenn Research Center and Case Western Reserve University for help with the experimental portion of this work. The authors would also like to thank Sabah Bux and Jean-Pierre Fleurial from NASA JPL for helpful discussions and assistance with hot pressing some samples. This research was supported in part by the Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy. Funding for this work was provided by funding source NASA/USRA 04555-004, the NASA Radioisotope Power System Program, and by NASA Kentucky under NASA Award No: NNX10AL96H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Mackey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mackey, J., Dynys, F., Hudak, B.M. et al. Co x Ni4−x Sb12−y Sn y skutterudites: processing and thermoelectric properties. J Mater Sci 51, 6117–6132 (2016). https://doi.org/10.1007/s10853-016-9868-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9868-9

Keywords

Navigation