Skip to main content

Advertisement

Log in

Electrochemical in situ X-ray probing in lithium-ion and sodium-ion batteries

  • Batteries and Supercapacitors
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In situ X-ray diffraction (XRD), as a widely used tool in probing the structure evolution in electrochemical process as well as the energy storage and capacity fading mechanism, has shown great effects with optimizing and building better batteries. Based on the research progresses of in situ XRD in recent years, we give a review of the development and the utilization of this powerful tool in understanding the complex electrochemical mechanisms. The studies on in situ XRD are divided into three sections based on the reaction mechanisms: alloying, conversion, and intercalation reactions in lithium-ion batteries. The alloying reaction, in which lithium ions insert into Si, Sb, and Ge is firstly reviewed, followed by a discussion about the recent development of in situ XRD on conversion reaction materials (including metal oxides and metal sulfides) and intercalation reaction materials (including cathode materials and some structure-stable anode materials). As for sodium-ion batteries, we divide these researches on structure evolution into two categories: cathode and anode materials. Finally, the future development of in situ XRD is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

a Reproduced with permission from Hatchard and Dahn [21]. b Reproduced with permission from Li et al. [23]. c Reproduced with permission from Misra et al. [24]. d Reproduced with permission from Hewitt et al. [27]

Figure 2

Reproduced with permission from Baggetto and Notten [32]

Figure 3

a Reproduced with permission from An et al. [37]. b Reproduced with permission from Kim et al. [41]

Figure 4

a Reproduced with permission from Luo et al. [45]. b Reproduced with permission from Débart et al. [52]

Figure 5

a Reproduced with permission from Shen et al. [58]. b Reproduced with permission from Liang et al. [60]. c Reproduced with permission from Li et al. [61]

Figure 6

a Reproduced with permission from Pang et al. [68]. b Reproduced with permission from Dong et al. [75]

Figure 7

Reproduced with permission from Meng et al. [81]

Figure 8

Reproduced with permission from Hirayama et al. [87]

Figure 9

a Reproduced with permission from Gibot et al. [91]. b Reproduced with permission from Chen et al. [94]. c Reproduced with permission from Liu et al. [95]

Figure 10

a Reproduced with permission from Ellis et al. [100]. b Reproduced with permission from Senguttuvan et al. [103]

Figure 11

Reproduced with permission from Xu et al. [110]

Figure 12

a Reproduced with permission from Wang et al. [113]. b Reproduced with permission from Ou et al. [114]

Figure 13

Reproduced with permission from Sauvage et al. [119]

Figure 14

a Reproduced with permission from Jian et al. [122]. b Reproduced with permission from Wang et al. [123]

Figure 15

a Reproduced with permission from Zhu et al. [124]. b Reproduced with permission from Mu et al. [125]. c Reproduced with permission from Xie et al. [14]

Similar content being viewed by others

References

  1. Whittingham MS (2014) Ultimate limits to intercalation reactions for lithium batteries. Chem Rev 114:11414–11443. doi:10.1021/cr5003003

    Article  Google Scholar 

  2. Hu X, Zhang W, Liu X, Mei Y, Huang Y (2015) Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem Soc Rev 44:2376–2404. doi:10.1039/c4cs00350k

    Article  Google Scholar 

  3. Islam MS, Fisher CA (2014) Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev 43:185–204. doi:10.1039/c3cs60199d

    Article  Google Scholar 

  4. Wang ZL, Xu D, Xu JJ, Zhang XB (2014) Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev 43:7746–7786. doi:10.1039/c3cs60248f

    Article  Google Scholar 

  5. Palacin MR, de Guibert A (2016) Why do batteries fail? Science 351:1253292. doi:10.1126/science.1253292

    Article  Google Scholar 

  6. Tarascon JM, Vaughan G, Chabre Y et al (1999) In situ structural and electrochemical study of Ni1−xCoxO2 metastable oxides prepared by soft chemistry. J Solid State Chem 147:410–420. doi:10.1006/jssc.1999.8465

    Article  Google Scholar 

  7. Palacín MR, Le Cras F, Seguin L et al (1999) In situ structural study of 4 V-range lithium extraction/insertion in fluorine-substituted LiMn2O4. J Solid State Chem 144:361–377. doi:10.1006/jssc.1999.8166

    Article  Google Scholar 

  8. Macklin WJ, Neat RJ, Sandhu SS (1992) Structural changes in vanadium oxide-based cathodes during cycling in a lithium polymer electrolyte cell. Electrochim Acta 37:1715–1720. doi:10.1016/0013-4686(92)80145-c

    Article  Google Scholar 

  9. Kumagai N, Kikuchi Y, Tanno K (1990) Kinetic and structural characteristics of niobium vanadium oxide electrodes for secondary lithium batteries. Solid State Ionics 40–41:978–981. doi:10.1016/0167-2738(90)90167-p

    Article  Google Scholar 

  10. Delmas C, Fouassier C, Hagenmuller P (1980) Structural classification and properties of the layered oxides. Phys B 99:81–85. doi:10.1016/0378-4363(80)90214-4

    Article  Google Scholar 

  11. Chung KY, Yoon WS, Lee HS et al (2006) In situ XRD studies of the structural changes of ZrO2-coated LiCoO2 during cycling and their effects on capacity retention in lithium batteries. J Power Sources 163:185–190. doi:10.1016/j.jpowsour.2005.12.063

    Article  Google Scholar 

  12. Shin HC, Bin Park S, Jang H et al (2008) Rate performance and structural change of Cr-doped LiFePO4/C during cycling. Electrochim Acta 53:7946–7951. doi:10.1016/j.electacta.2008.06.005

    Article  Google Scholar 

  13. Yoon W-S, Nam K-W, Jang D et al (2012) The kinetic effect on structural behavior of mixed LiMn2O4–LiNi1/3Co1/3Mn1/3O2 cathode materials studied by in situ time-resolved X-ray diffraction technique. Electrochem Commun 15:74–77. doi:10.1016/j.elecom.2011.11.027

    Article  Google Scholar 

  14. Xie Y, Wang H, Xu G et al (2016) In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation. Adv Energy Mater. doi:10.1002/aenm.201601306

    Google Scholar 

  15. Ferguson TR, Bazant MZ (2014) Phase transformation dynamics in porous battery electrodes. Electrochim Acta 146:89–97. doi:10.1016/j.electacta.2014.08.083

    Article  Google Scholar 

  16. Lai W, Ciucci F (2010) Thermodynamics and kinetics of phase transformation in intercalation battery electrodes—phenomenological modeling. Electrochim Acta 56:531–542. doi:10.1016/j.electacta.2010.09.015

    Article  Google Scholar 

  17. Liu Y, Fujiwara T, Yukawa H, Morinaga M (2000) Lithium intercalation and alloying effects on electronic structures of spinel lithium manganese oxides. Sol Energy Mater Sol Cells 62:81–87. doi:10.1016/s0927-0248(99)00138-5

    Article  Google Scholar 

  18. Palacin MR (2009) Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev 38:2565–2575. doi:10.1039/b820555h

    Article  Google Scholar 

  19. Chan CK, Peng H, Liu G et al (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35. doi:10.1038/nnano.2007.411

    Article  Google Scholar 

  20. Boukamp BA (1981) All-solid lithium electrodes with mixed-conductor matrix. J Electrochem Soc 128:725–729. doi:10.1149/1.2127495

    Article  Google Scholar 

  21. Hatchard TD, Dahn JR (2004) In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J Electrochem Soc 151:A838–A842. doi:10.1149/1.1739217

    Article  Google Scholar 

  22. Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid State 7:A93–A96. doi:10.1149/1.1652421

    Article  Google Scholar 

  23. Li J, Dahn JR (2007) An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J Electrochem Soc 154:A156–A161. doi:10.1149/1.2409862

    Article  Google Scholar 

  24. Misra S, Liu N, Nelson J, Hong SS, Cui Y, Toney MF (2012) In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. ACS Nano 6:5465–5473. doi:10.1021/nn301339g

    Article  Google Scholar 

  25. Baggetto L, Ganesh P, Sun CN, Meisner RA, Zawodzinski TA, Veith GM (2013) Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory. J Mater Chem A 1:7985–7994. doi:10.1039/c3ta11568b

    Article  Google Scholar 

  26. Kim SW, Seo DH, Ma XH, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721. doi:10.1002/aenm.201200026

    Article  Google Scholar 

  27. Hewitt KC, Beaulieu LY, Dahn JR (2001) Electrochemistry of InSb as a Li insertion host problems and prospects. J Electrochem Soc 148:A402–A410. doi:10.1149/1.1359194

    Article  Google Scholar 

  28. Wang J (1986) Behavior of some binary lithium alloys as negative electrodes in organic solvent-based electrolytes. J Electrochem Soc 133:457–460. doi:10.1149/1.2108601

    Article  Google Scholar 

  29. Song JX, Zhou MJ, Yi R et al (2014) Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv Funct Mater 24:5904–5910. doi:10.1002/adfm.201401269

    Article  Google Scholar 

  30. Liu XH, Huang S, Picraux ST, Li J, Zhu T, Huang JY (2011) Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study. Nano Lett 11:3991–3997. doi:10.1021/nl2024118

    Article  Google Scholar 

  31. Liu XH, Zheng H, Zhong L et al (2011) Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett 11:3312–3318. doi:10.1021/nl201684d

    Article  Google Scholar 

  32. Baggetto L, Notten PHL (2009) Lithium-ion (de)insertion reaction of germanium thin-film electrodes: an electrochemical and in situ XRD study. J Electrochem Soc 156:A169–A175. doi:10.1149/1.3055984

    Article  Google Scholar 

  33. Arico AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377. doi:10.1038/nmat1368

    Article  Google Scholar 

  34. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262. doi:10.1039/c1ee01598b

    Article  Google Scholar 

  35. Wei W, Yang S, Zhou H, Lieberwirth I, Feng X, Mullen K (2013) 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv Mater 25:2909–2914. doi:10.1002/adma.201300445

    Article  Google Scholar 

  36. Li L, Kovalchuk A, Fei HL et al (2015) Enhanced cycling stability of lithium-ion batteries using graphene-wrapped Fe3O4-graphene nanoribbons as anode materials. Adv Energy Mater 5:1500171. doi:10.1002/Aenm.201500171

    Article  Google Scholar 

  37. An Q, Lv F, Liu Q et al (2014) Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett 14:6250–6256. doi:10.1021/nl5025694

    Article  Google Scholar 

  38. Balaya P, Li H, Kienle L, Maier J (2003) Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv Funct Mater 13:621–625. doi:10.1002/adfm.200304406

    Article  Google Scholar 

  39. Delmer O, Balaya P, Kienle L, Maier J (2008) Enhanced potential of amorphous electrode materials: case study of RuO2. Adv Mater 20:501–505. doi:10.1002/adma.200701349

    Article  Google Scholar 

  40. Gregorczyk KE, Kozen AC, Chen X et al (2015) Fabrication of 3D core-shell multiwalled carbon nanotube@RuO2 lithium-ion battery electrodes through a RuO2 atomic layer deposition process. ACS Nano 9:464–473. doi:10.1021/nn505644q

    Article  Google Scholar 

  41. Kim Y, Muhammad S, Kim H et al (2015) Probing the additional capacity and reaction mechanism of the RuO2 anode in lithium rechargeable batteries. Chemsuschem 8:2378–2384. doi:10.1002/cssc.201403488

    Article  Google Scholar 

  42. Hassan AS, Moyer K, Ramachandran BR, Wick CD (2016) Comparison of storage mechanisms in RuO2, SnO2, and SnS2 for lithium-ion battery anode materials. J Phys Chem C 120:2036–2046. doi:10.1021/acs.jpcc.5b09078

    Article  Google Scholar 

  43. Baudrin E (1999) Synthesis and electrochemical properties of cobalt vanadates vs. lithium. Solid State Ionics 123:139–153. doi:10.1016/s0167-2738(99)00096-x

    Article  Google Scholar 

  44. Wu F, Yu C, Liu W, Wang T, Feng J, Xiong S (2015) Large-scale synthesis of Co2V2O7 hexagonal microplatelets under ambient conditions for highly reversible lithium storage. J Mater Chem A 3:16728–16736. doi:10.1039/c5ta03106k

    Article  Google Scholar 

  45. Luo Y, Xu X, Zhang Y et al (2016) Graphene oxide templated growth and superior lithium storage performance of novel hierarchical Co2V2O7 nanosheets. ACS Appl Mater Interfaces 8:2812–2818. doi:10.1021/acsami.5b11510

    Article  Google Scholar 

  46. Wu ZS, Ren W, Wen L et al (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194. doi:10.1021/nn100740x

    Article  Google Scholar 

  47. Peng C, Chen B, Qin Y et al (2012) Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 6:1074–1081. doi:10.1021/nn202888d

    Article  Google Scholar 

  48. Yang G, Cui H, Yang G, Wang C (2014) Self-assembly of Co3V2O8 multilayered nanosheets: controllable synthesis, excellent Li-storage properties, and investigation of electrochemical mechanism. ACS Nano 8:4474–4487. doi:10.1021/nn406449u

    Article  Google Scholar 

  49. Apostolova RD, Kolomoyets OV, Shembel’ EM (2011) Optimization of iron sulfides usage in electrolytic composites with graphites for lithium-ion batteries. Surf Eng Appl Electrochem 47:465–470. doi:10.3103/s1068375511050036

    Article  Google Scholar 

  50. Balogun MS, Qiu W, Jian J et al (2015) Vanadium nitride nanowire supported SnS2 nanosheets with high reversible capacity as anode material for lithium ion batteries. ACS Appl Mater Interfaces 7:23205–23215. doi:10.1021/acsami.5b07044

    Article  Google Scholar 

  51. Chung JS, Sohn HJ (2002) Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries. J Power Sources 108:226–231. doi:10.1016/S0378-7753(02)00024-1

    Article  Google Scholar 

  52. Débart A, Dupont L, Patrice R, Tarascon JM (2006) Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: the intriguing case of the copper sulphide. Solid State Sci 8:640–651. doi:10.1016/j.solidstatesciences.2006.01.013

    Article  Google Scholar 

  53. Tao HC, Yang XL, Zhang LL, Ni SB (2014) One-pot facile synthesis of CuS/graphene composite as anode materials for lithium ion batteries. J Phys Chem Solids 75:1205–1209. doi:10.1016/j.jpcs.2014.06.010

    Article  Google Scholar 

  54. Wang XX, Wang YH, Li X, Liu B, Zhao JB (2015) A facile synthesis of copper sulfides composite with lithium-storage properties. J Power Sources 281:185–191. doi:10.1016/j.jpowsour.2015.01.172

    Article  Google Scholar 

  55. Song T, Han H, Choi H et al (2015) TiO2 nanotube branched tree on a carbon nanofiber nanostructure as an anode for high energy and power lithium ion batteries. Nano Res 7:491–501. doi:10.1007/s12274-014-0415-1

    Article  Google Scholar 

  56. Qiu J, Li S, Gray E et al (2014) Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries. J Phys Chem C 118:8824–8830. doi:10.1021/jp501819p

    Article  Google Scholar 

  57. Wagemaker M, Borghols WJ, Mulder FM (2007) Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J Am Chem Soc 129:4323–4327. doi:10.1021/ja067733p

    Article  Google Scholar 

  58. Shen K, Chen H, Klaver F, Mulder FM, Wagemaker M (2014) Impact of particle size on the non-equilibrium phase transition of lithium-inserted anatase TiO2. Chem Mater 26:1608–1615. doi:10.1021/cm4037346

    Article  Google Scholar 

  59. Li HQ, Liu XZ, Zhai TY, Li D, Zhou HS (2013) Li3VO4: a promising insertion anode material for lithium-ion batteries. Adv Energy Mater 3:428–432. doi:10.1002/aenm.201200833

    Article  Google Scholar 

  60. Liang ZY, Lin ZP, Zhao YM et al (2015) New understanding of Li3VO4/C as potential anode for Li-ion batteries: preparation, structure characterization and lithium insertion mechanism. J Power Sources 274:345–354. doi:10.1016/j.jpowsour.2014.10.024

    Article  Google Scholar 

  61. Li QD, Wei QL, Sheng JZ et al (2015) Mesoporous Li3VO4/C submicron-ellipsoids supported on reduced graphene oxide as practical anode for high-power lithium-ion batteries. Adv Sci 2:1500284. doi:10.1002/advs.201500284

    Article  Google Scholar 

  62. Zhou LL, Shen SY, Peng XX et al (2016) New insights into the structure changes and interface properties of Li3VO4 anode for lithium-ion batteries during the initial cycle by in situ techniques. ACS Appl Mater Interfaces 8:23739–23745. doi:10.1021/acsami.6b07811

    Article  Google Scholar 

  63. Débart A, Paterson AJ, Bao J, Bruce PG (2008) α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew Chem 120:4597–4600. doi:10.1002/ange.200705648

    Article  Google Scholar 

  64. Li L, Nan C, Lu J, Peng Q, Li Y (2012) alpha-MnO2 nanotubes: high surface area and enhanced lithium battery properties. Chem Commun (Camb) 48:6945–6947. doi:10.1039/c2cc32306k

    Article  Google Scholar 

  65. Yuan Y, Nie A, Odegard GM et al (2015) Asynchronous crystal cell expansion during lithiation of K+-stabilized alpha-MnO2. Nano Lett 15:2998–3007. doi:10.1021/nl5048913

    Article  Google Scholar 

  66. Chen WM, Qie L, Shao QG, Yuan LX, Zhang WX, Huang YH (2012) Controllable synthesis of hollow bipyramid beta-MnO2 and its high electrochemical performance for lithium storage. ACS Appl Mater Interfaces 4:3047–3053. doi:10.1021/am300410z

    Article  Google Scholar 

  67. Chen R (1997) Cathodic behavior of alkali manganese oxides from permanganate. J Electrochem Soc 144:L64–L67. doi:10.1149/1.1837554

    Article  Google Scholar 

  68. Pang WK, Peterson VK, Sharma N, Zhang C, Guo Z (2014) Evidence of solid-solution reaction upon lithium insertion into cryptomelane K0.25Mn2O4 material. J Phys Chem C 118:3976–3983. doi:10.1021/jp411687n

    Article  Google Scholar 

  69. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9:146–151. doi:10.1038/nmat2612

    Article  Google Scholar 

  70. Lee SH, Kim YH, Deshpande R et al (2008) Reversible lithium-ion insertion in molybdenum oxide nanoparticles. Adv Mater 20:3627–3632. doi:10.1002/adma.200800999

    Article  Google Scholar 

  71. Zhou L, Yang L, Yuan P, Zou J, Wu Y, Yu C (2010) α-MoO3 nanobelts: a high performance cathode material for lithium ion batteries. J Phys Chem C 114:21868–21872. doi:10.1021/jp108778v

    Article  Google Scholar 

  72. Ni JF, Wang GB, Yang J et al (2014) Carbon nanotube-wired and oxygen-deficient MoO3 nanobelts with enhanced lithium-storage capability. J Power Sources 247:90–94. doi:10.1016/j.jpowsour.2013.08.068

    Article  Google Scholar 

  73. Wang X-J, Nesper R, Villevieille C, Novák P (2013) Ammonolyzed MoO3 nanobelts as novel cathode material of rechargeable Li-ion batteries. Adv Energy Mater 3:606–614. doi:10.1002/aenm.201200692

    Article  Google Scholar 

  74. Mai LQ, Hu B, Chen W et al (2007) Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv Mater 19:3712–3716. doi:10.1002/adma.200700883

    Article  Google Scholar 

  75. Dong YF, Xu XM, Li S et al (2015) Inhibiting effect of Na+ pre-intercalation in MoO3 nanobelts with enhanced electrochemical performance. Nano Energy 15:145–152. doi:10.1016/j.nanoen.2015.04.015

    Article  Google Scholar 

  76. An Q, Wei Q, Zhang P et al (2015) Three-dimensional interconnected vanadium pentoxide nanonetwork cathode for high-rate long-life lithium batteries. Small 11:2654–2660. doi:10.1002/smll.201403358

    Article  Google Scholar 

  77. Ren W, Zheng Z, Luo Y et al (2015) An electrospun hierarchical LiV3O8 nanowire-in-network for high-rate and long-life lithium batteries. J Mater Chem A 3:19850–19856. doi:10.1039/c5ta04643b

    Article  Google Scholar 

  78. Tian XC, Xu X, He L et al (2014) Ultrathin pre-lithiated V6O13 nanosheet cathodes with enhanced electrical transport and cyclability. J Power Sources 255:235–241. doi:10.1016/j.jpowsour.2014.01.017

    Article  Google Scholar 

  79. Liu HM, Zhou HS, Chen LP, Tang ZF, Yang WS (2011) Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries. J Power Sources 196:814–819. doi:10.1016/j.jpowsour.2010.07.062

    Article  Google Scholar 

  80. Wang H, Wang W, Ren Y, Huang K, Liu S (2012) A new cathode material Na2V6O16·xH2O nanowire for lithium ion battery. J Power Sources 199:263–269. doi:10.1016/j.jpowsour.2011.10.045

    Article  Google Scholar 

  81. Meng JS, Liu Z, Niu CJ et al (2016) A synergistic effect between layer surface configurations and K ions of potassium vanadate nanowires for enhanced energy storage performance. J Mater Chem A 4:4893–4899. doi:10.1039/c6ta00556j

    Article  Google Scholar 

  82. Niu C, Liu X, Meng J et al (2016) Three dimensional V2O5/NaV6O15 hierarchical heterostructures: controlled synthesis and synergistic effect investigated by in situ X-ray diffraction. Nano Energy 27:147–156. doi:10.1016/j.nanoen.2016.06.057

    Article  Google Scholar 

  83. Yan M, Zhao L, Zhao K et al (2016) The capturing of ionized oxygen in sodium vanadium oxide nanorods cathodes under operando conditions. Adv Funct Mater 26:6555–6562. doi:10.1002/adfm.201602134

    Article  Google Scholar 

  84. Jang DH (1996) Dissolution of spinel oxides and capacily losses in 4 V Li/LixMn2O4 cells. J Electrochem Soc 143:2204–2211. doi:10.1149/1.1836981

    Article  Google Scholar 

  85. Chung KY, Kim KB (2002) Investigation of structural fatigue in spinel electrodes using in situ laser probe beam deflection technique. J Electrochem Soc 149:A79–A85. doi:10.1149/1.1426396

    Article  Google Scholar 

  86. Chung KY, Lee HS, Yoon W-S, McBreen J, Yang X-Q (2006) Studies of LiMn2O4 capacity fading at elevated temperature using in situ synchrotron x-ray diffraction. J Electrochem Soc 153:A774–A780. doi:10.1149/1.2172565

    Article  Google Scholar 

  87. Hirayama M, Ido H, Kim K et al (2010) Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction. J Am Chem Soc 132:15268–15276. doi:10.1021/ja105389t

    Article  Google Scholar 

  88. Padhi AK (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194. doi:10.1149/1.1837571

    Article  Google Scholar 

  89. Roberts MR, Madsen A, Nicklin C et al (2014) Direct observation of active material concentration gradients and crystallinity breakdown in LiFePO4 electrodes during charge/discharge cycling of lithium batteries. J Phys Chem C 118:6548–6557. doi:10.1021/jp411152s

    Article  Google Scholar 

  90. Villevieille C, Sasaki T, Novak P (2014) Novel electrochemical cell designed for operando techniques and impedance studies. RSC Adv 4:6782–6789. doi:10.1039/c3ra46184j

    Article  Google Scholar 

  91. Gibot P, Casas-Cabanas M, Laffont L et al (2008) Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat Mater 7:741–747. doi:10.1038/nmat2245

    Article  Google Scholar 

  92. Delacourt C, Poizot P, Tarascon JM, Masquelier C (2005) The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1. Nat Mater 4:254–260. doi:10.1038/nmat1335

    Article  Google Scholar 

  93. Malik R, Zhou F, Ceder G (2011) Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat Mater 10:587–590. doi:10.1038/nmat3065

    Article  Google Scholar 

  94. Chen J, Graetz J (2011) Study of antisite defects in hydrothermally prepared LiFePO4 by in situ X-ray diffraction. ACS Appl Mater Interfaces 3:1380–1384. doi:10.1021/am200141a

    Article  Google Scholar 

  95. Liu H, Strobridge FC, Borkiewicz OJ et al (2014) Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes. Science 344:1252817. doi:10.1126/science.1252817

    Article  Google Scholar 

  96. Yan MY, Zhang GB, Wei QL et al (2016) In operando observation of temperature dependent phase evolution in lithium-incorporation olivine cathode. Nano Energy 22:406–413. doi:10.1016/j.nanoen.2016.01.031

    Article  Google Scholar 

  97. Chevrier VL, Ceder G (2011) Challenges for Na-ion negative electrodes. J Electrochem Soc 158:A1011–A1014. doi:10.1149/1.3607983

    Article  Google Scholar 

  98. Kim C, Lee KY, Kim I et al (2016) Long-term cycling stability of porous Sn anode for sodium-ion batteries. J Power Sources 317:153–158. doi:10.1016/j.jpowsour.2016.03.060

    Article  Google Scholar 

  99. Xu YH, Zhu YJ, Liu YH, Wang CS (2013) Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energy Mater 3:128–133. doi:10.1002/aenm.201200346

    Article  Google Scholar 

  100. Ellis LD, Hatchard TD, Obrovac MN (2012) Reversible insertion of sodium in tin. J Electrochem Soc 159:A1801–A1805. doi:10.1149/2.037211jes

    Article  Google Scholar 

  101. Yang D, Zheng Z, Liu H et al (2008) Layered titanate nanofibers as efficient adsorbents for removal of toxic radioactive and heavy metal ions from water. J Phys Chem C 112:16275–16280. doi:10.1021/jp803826g

    Article  Google Scholar 

  102. Izawa H, Kikkawa S, Koizumi M (1982) Ion exchange and dehydration of layered [sodium and potassium] titanates, Na2Ti3O7 and K2Ti4O9. J Phys Chem 86:5023–5026. doi:10.1021/j100222a036

    Article  Google Scholar 

  103. Senguttuvan P, Rousse G, Seznec V, Tarascon JM, Palacin MR (2011) Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem Mater 23:4109–4111. doi:10.1021/cm202076g

    Article  Google Scholar 

  104. Fu S, Ni J, Xu Y, Zhang Q, Li L (2016) Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries. Nano Lett 16:4544–4551. doi:10.1021/acs.nanolett.6b01805

    Article  Google Scholar 

  105. Ni J, Fu S, Wu C et al (2016) Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering. Adv Energy Mater 6:1502568. doi:10.1002/aenm.201502568

    Article  Google Scholar 

  106. Masquelier C, Croguennec L (2013) Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev 113:6552–6591. doi:10.1021/cr3001862

    Article  Google Scholar 

  107. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682. doi:10.1021/cr500192f

    Article  Google Scholar 

  108. Wu C, Kopold P, Ding YL, van Aken PA, Maier J, Yu Y (2015) Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes. ACS Nano 9:6610–6618. doi:10.1021/acsnano.5b02787

    Article  Google Scholar 

  109. Jiang Y, Shi J, Wang M, Zeng L, Gu L, Yu Y (2016) Highly reversible and ultrafast sodium storage in NaTi2(PO4)3 nanoparticles embedded in nanocarbon networks. ACS Appl Mater Interfaces 8:689–695. doi:10.1021/acsami.5b09811

    Article  Google Scholar 

  110. Xu C, Xu Y, Tang C et al (2016) Carbon-coated hierarchical NaTi2(PO4)3 mesoporous microflowers with superior sodium storage performance. Nano Energy 28:224–231. doi:10.1016/j.nanoen.2016.08.026

    Article  Google Scholar 

  111. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275. doi:10.1038/nchem.1589

    Article  Google Scholar 

  112. Bloise AC, Donoso JP, Magon CJ et al (2002) NMR study of lithium dynamics and molecular motions in a diethylamine-molybdenum disulfide intercalation compound. J Phys Chem B 106:11698–11707. doi:10.1021/jp012839m

    Article  Google Scholar 

  113. Wang X, Shen X, Wang Z, Yu R, Chen L (2014) Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation. ACS Nano 8:11394–11400. doi:10.1021/nn505501v

    Article  Google Scholar 

  114. Ou X, Xiong XH, Zheng FH et al (2016) In situ X-ray diffraction characterization of NbS2 nanosheets as the anode material for sodium ion batteries. J Power Sources 325:410–416. doi:10.1016/j.jpowsour.2016.06.055

    Article  Google Scholar 

  115. Yang E, Ji H, Jung Y (2015) Two-dimensional transition metal dichalcogenide monolayers as promising sodium ion battery anodes. J Phys Chem C 119:26374–26380. doi:10.1021/acs.jpcc.5b09935

    Article  Google Scholar 

  116. Cao Y, Xiao L, Wang W et al (2011) Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv Mater 23:3155–3160. doi:10.1002/adma.201100904

    Article  Google Scholar 

  117. Whitacre JF, Tevar A, Sharma S (2010) Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem Commun 12:463–466. doi:10.1016/j.elecom.2010.01.020

    Article  Google Scholar 

  118. Kim H, Kim DJ, Seo D-H et al (2012) Ab initio study of the sodium intercalation and intermediate phases in Na0.44MnO2 for sodium-ion battery. Chem Mater 24:1205–1211. doi:10.1021/cm300065y

    Article  Google Scholar 

  119. Sauvage F, Laffont L, Tarascon JM, Baudrin E (2007) Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg Chem 46:3289–3294. doi:10.1021/ic0700250

    Article  Google Scholar 

  120. Ren W, Zheng Z, Xu C et al (2016) Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium-ion full batteries. Nano Energy 25:145–153. doi:10.1016/j.nanoen.2016.03.018

    Article  Google Scholar 

  121. Xu Y, Wei Q, Xu C et al (2016) Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv Energy Mater 6:1600389. doi:10.1002/aenm.201600389

    Article  Google Scholar 

  122. Jian Z, Han W, Lu X et al (2013) Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv Energy Mater 3:156–160. doi:10.1002/aenm.201200558

    Article  Google Scholar 

  123. Wang XP, Niu CJ, Meng JS et al (2015) Novel K3V2(PO4)(3)/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability. Adv Energy Mater 5:1500716. doi:10.1002/aenm.201500716

    Article  Google Scholar 

  124. Zhu Y-E, Qi X, Chen X et al (2016) A P2-Na0.67Co0.5Mn0.5O2 cathode material with excellent rate capability and cycling stability for sodium ion batteries. J Mater Chem A 4:11103–11109. doi:10.1039/c6ta02845d

    Article  Google Scholar 

  125. Mu L, Xu S, Li Y et al (2015) Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Adv Mater 27:6928–6933. doi:10.1002/adma.201502449

    Article  Google Scholar 

  126. Li X, Wu D, Zhou Y-N, Liu L, Yang X-Q, Ceder G (2014) O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: a quaternary layered cathode compound for rechargeable Na ion batteries. Electrochem Commun 49:51–54. doi:10.1016/j.elecom.2014.10.003

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFA0202603), the National Basic Research Program of China (2013CB934103), the International Science & Technology Cooperation Program of China (2013DFA50840), the National Natural Science Foundation of China (51521001, 51272197, 51302203), the National Natural Science Fund for Distinguished Young Scholars (51425204), the Hubei Province Natural Science Fund for Distinguished Young Scholars (2014CFA035), and the Fundamental Research Funds for the Central Universities (WUT: 2015-PY-2, 2016III001, 2016III002, 2016III003, 2016III004, and 2016III006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Xu or Liqiang Mai.

Additional information

Guobin Zhang and Tengfei Xiong have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Xiong, T., He, L. et al. Electrochemical in situ X-ray probing in lithium-ion and sodium-ion batteries. J Mater Sci 52, 3697–3718 (2017). https://doi.org/10.1007/s10853-016-0732-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0732-8

Keywords

Navigation