Skip to main content
Log in

CVD growth of 1D and 2D sp2 carbon nanomaterials

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The discovery of graphene and carbon nanotubes (rolled-up graphene) has excited the world because their extraordinary properties promise tremendous developments in many areas. Like any materials with application potential, it needs to be fabricated in an economically viable manner and at the same time provides the necessary quality for relevant applications. Graphene and carbon nanotubes are no exception to this. In both cases, chemical vapor deposition (CVD) has emerged as the dominant synthesis route since it is already a well-established process both in industry and laboratories. In this work, we review the CVD fabrication of graphene and carbon nanotubes. Initially, we briefly introduce the materials and the CVD process. We then discuss pretreatment steps prior to the CVD reaction. The discussion then switches to the CVD process, provides comparative data for thermal CVD and plasma-enhanced CVD, and includes coverage of kinetics, thermodynamics, catalyst choice, and other aspects of growth as well as post production treatments. Finally, conclusions are drawn and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Warner JH, Schäffel F, Bachmatiuk A, Rümmeli MH (2013) Graphene fundamentals and emergent applications, 1st edn. Elsevier, Waltham

    Google Scholar 

  2. Rummeli MH, Ayala P, Pichler T (2010) Carbon nanotubes and related structures: production and formation. In: Guldi DM, Martín N (eds) Carbon nanotub. Relat. Struct. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, Germany, pp 1–21

    Google Scholar 

  3. Liu Z, Liu JZ, Cheng Y et al (2012) Interlayer binding energy of graphite: a mesoscopic determination from deformation. Phys Rev B 85:205418

    Article  Google Scholar 

  4. Rümmeli MH, Rocha CG, Ortmann F et al (2011) Graphene: piecing it together. Adv Mater 23:4471–4490

    Article  Google Scholar 

  5. Fallahazad B, Hao Y, Lee K et al (2012) Quantum Hall effect in Bernal stacked and twisted bilayer graphene grown on Cu by chemical vapor deposition. Phys Rev B 85:1–5

    Article  Google Scholar 

  6. Novoselov KS, Jiang Z, Zhang Y et al (2007) Room-temperature quantum Hall effect in graphene. Science 315:1379

    Article  Google Scholar 

  7. Han P, Akagi K, Canova FF et al (2014) Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 8:9181–9187

    Article  Google Scholar 

  8. Sangwan VK, Jariwala D, Everaerts K et al (2014) Wafer-scale solution-derived molecular gate dielectrics for low-voltage graphene electronics. Appl Phys Lett 104:083503

    Article  Google Scholar 

  9. Ang PK, Li A, Jaiswal M et al (2011) Flow sensing of single cell by graphene transistor in a microfluidic channel. Nano Lett 11:5240–5246

    Article  Google Scholar 

  10. Yan Z, Peng Z, Sun Z et al (2011) Growth of bilayer graphene on insulating substrates. ACS Nano 5:8187–8192

    Article  Google Scholar 

  11. Liu L, Zhou H, Cheng R et al (2012) High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano 6:8241–8249

    Article  Google Scholar 

  12. Wu Y, Chou H, Ji H et al (2012) Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu-Ni alloy foils. ACS Nano 6:7731–7738

    Article  Google Scholar 

  13. Yan K, Peng H, Zhou Y et al (2011) Formation of bilayer bernal graphene: Layer-by-layer epitaxy via chemical vapor deposition. Nano Lett 11:1106–1110

    Article  Google Scholar 

  14. Xia F, Farmer DB, Lin YM, Avouris P (2010) Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 10:715–718

    Article  Google Scholar 

  15. Yu WJ, Liao L, Chae SH et al (2011) Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping. Nano Lett 11:4759–4763

    Article  Google Scholar 

  16. Bachmatiuk A, Mendes RG, Hirsch C et al (2013) Few-layer graphene shells and nonmagnetic encapsulates: a versatile and nontoxic carbon nanomaterial. ACS Nano 7:10552–10562

    Article  Google Scholar 

  17. Deng J, Chen L, Sun Y et al (2015) Interconnected MnO2 nanoflakes assembled on graphene foam as a binder-free and long-cycle life lithium battery anode. Carbon 92:177–184

    Article  Google Scholar 

  18. Guo J, Zhang T, Hu C, Fu L (2015) A three-dimensional nitrogen-doped graphene structure: a highly efficient carrier of enzymes for biosensors. Nanoscale 7:1290–1295

    Article  Google Scholar 

  19. Hu X, Ma M, Zeng M et al (2014) Supercritical carbon dioxide anchored Fe3O4 nanoparticles on graphene foam and lithium battery performance. ACS Appl Mater Interfaces 6:22527–22533

    Article  Google Scholar 

  20. Liu J, Leng X, Xiao Y et al (2015) 3D nitrogen-doped graphene/β-cyclodextrin: host–guest interactions for electrochemical sensing. Nanoscale 7:11922–11927

    Article  Google Scholar 

  21. Bachmatiuk A, Boeckl J, Smith H et al (2015) Vertical graphene growth from amorphous carbon films using oxidizing gases. J Phys Chem C 119:17965–17970

    Article  Google Scholar 

  22. Davami K, Shaygan M, Kheirabi N et al (2014) Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition. Carbon 72:372–380

    Article  Google Scholar 

  23. Zhao J, Shaygan M, Eckert J et al (2014) A growth mechanism for free-standing vertical graphene. Nano Lett 14:3064–3071

    Article  Google Scholar 

  24. Park H, Chang S, Jean J et al (2013) Graphene cathode-based ZnO nanowire hybrid solar cells. Nano Lett 13:233–239

    Article  Google Scholar 

  25. Chattopadhyay S, Lipson AL, Karmel HJ et al (2012) In situ X-ray study of the solid electrolyte interphase (SEI) formation on graphene as a model Li-ion battery anode. Chem Mater 24:3038–3043

    Article  Google Scholar 

  26. Cheng Y, Lu S, Zhang H et al (2012) Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett 12:4206–4211

    Article  Google Scholar 

  27. Liang YT, Vijayan BK, Gray KA, Hersam MC (2011) Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Lett 11:2865–2870

    Article  Google Scholar 

  28. Lu S, Cheng Y, Wu X, Liu J (2013) Significantly improved long-cycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers. Nano Lett 13:2485–2489

    Article  Google Scholar 

  29. Ma Y, Li P, Sedloff JW et al (2015) conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes. ACS Nano 9:1352–1359

    Article  Google Scholar 

  30. Wang Y, Tong SW, Xu XF et al (2011) Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv Mater 23:1514–1518

    Article  Google Scholar 

  31. Yusoff ARBM, Dai L, Cheng H-M, Liu J (2015) Graphene based energy devices. Nanoscale 7:6881–6882

    Google Scholar 

  32. Zang J, Cao C, Feng Y et al (2014) Stretchable and high-performance supercapacitors with crumpled graphene papers. Sci Rep 4:6492

    Article  Google Scholar 

  33. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  Google Scholar 

  34. Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9:3012–3015

    Article  Google Scholar 

  35. Kalaitzidou K, Fukushima H, Askeland P, Drzal LT (2008) The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites. J Mater Sci 43:2895–2907

    Article  Google Scholar 

  36. Bao Q, Zhang H, Wang B et al (2011) Broadband graphene polarizer. Nat Photonics 5:411–415

    Article  Google Scholar 

  37. Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308

    Article  Google Scholar 

  38. Huang PY, Ruiz-Vargas CS, van der Zande AM et al (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469:389–392

    Article  Google Scholar 

  39. Kim K, Lee Z, Regan W et al (2011) Grain boundary mapping in polycrystalline graphene. ACS Nano 5:2142–2146

    Article  Google Scholar 

  40. Liu Z, Suenaga K, Harris PJF, Iijima S (2009) Open and closed edges of graphene layers. Phys Rev Lett 102:015501

    Article  Google Scholar 

  41. Hashimoto A, Suenaga K, Gloter A et al (2004) Direct evidence for atomic defects in graphene layers. Nature 430:870–873

    Article  Google Scholar 

  42. Meyer JC, Kisielowski C, Erni R et al (2008) Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett 8:3582–3586

    Article  Google Scholar 

  43. Cortijo A, Vozmediano MAH (2007) Electronic properties of curved graphene sheets. Europhys Lett 77:47002

    Article  Google Scholar 

  44. Cortijo A, Vozmediano MAH (2007) Effects of topological defects and local curvature on the electronic properties of planar graphene. Nucl Phys B 763:293–308

    Article  Google Scholar 

  45. Banhart F, Kotakoski J, Krasheninnikov AV (2011) Structural defects in graphene. ACS Nano 5:26–41

    Article  Google Scholar 

  46. Warner JH, Margine ER, Mukai M et al (2012) Dislocation-driven deformations in graphene. Science 337:209–212

    Article  Google Scholar 

  47. Bao Q, Zhang H, Yang J et al (2010) Graphene-polymer nanofiber membrane for ultrafast photonics. Adv Funct Mater 20:782–791

    Article  Google Scholar 

  48. Hossain MZ, Johns JE, Bevan KH et al (2012) Chemically homogeneous and thermally reversible oxidation of epitaxial graphene. Nat Chem 4:305–309

    Article  Google Scholar 

  49. Hossain MZ, Walsh MA, Hersam MC (2010) Scanning tunneling microscopy, spectroscopy, and nanolithography of epitaxial graphene chemically modified with aryl moieties. J Am Chem Soc 132:15399–15403

    Article  Google Scholar 

  50. Manga KK, Wang S, Jaiswal M et al (2010) High-gain graphene-titanium oxide photoconductor made from inkjet printable ionic solution. Adv Mater 22:5265–5270

    Article  Google Scholar 

  51. Mendes RG, Koch B, Bachmatiuk A et al (2015) A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. J Mater Chem B 3:2522–2529

    Article  Google Scholar 

  52. Yan L, Zheng YB, Zhao F et al (2012) Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem Soc Rev 41:97–114

    Article  Google Scholar 

  53. Johns JE, Hersam MC (2013) Atomic covalent functionalization of graphene. Acc Chem Res 46:77–86

    Article  Google Scholar 

  54. Mendes RG, Bachmatiuk A, Büchner B et al (2013) Carbon nanostructures as multi-functional drug delivery platforms. J Mater Chem B 1:401–428

    Article  Google Scholar 

  55. Choi Gill B, Park Jung T, Yang Ho M et al (2010) Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4:2910–2918

    Article  Google Scholar 

  56. Bi H, Yin K, Xie X et al (2013) Ultrahigh humidity sensitivity of graphene oxide. Sci Rep 3:2714

    Article  Google Scholar 

  57. Liu S, Zeng TH, Hofmann M et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980

    Article  Google Scholar 

  58. Wang H, Cui L-F, Yang Y et al (2010) Mn3O4—graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978–13980

    Article  Google Scholar 

  59. Li Y, Wang H, Xie L et al (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299

    Article  Google Scholar 

  60. Dresselhaus MS, Jorio A, Saito R (2010) Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy. Annu Rev Condens Matter Phys 1:89–108

    Article  Google Scholar 

  61. Benedict LX, Crespi VH, Louie SG, Cohen ML (1995) Static conductivity and superconductivity of carbon nanotubes: relations between tubes and sheets. Phys Rev B 52:14935–14940

    Article  Google Scholar 

  62. Kim W, Choi HC, Shim M et al (2002) Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes. Nano Lett 2:703–708

    Article  Google Scholar 

  63. Odom TW, Huang J-L, Kim P, Lieber CM (2000) Structure and electronic properties of carbon nanotubes. J Phys Chem B 104:2794–2809

    Article  Google Scholar 

  64. Popov VN, Lambin P (2006) Radius and chirality dependence of the radial breathing mode and the G-band phonon modes of single-walled carbon nanotubes. Phys Rev B 73:085407

    Article  Google Scholar 

  65. Sasaki K-I, Saito R, Dresselhaus G et al (2008) Curvature-induced optical phonon frequency shift in metallic carbon nanotubes. Phys Rev B 77:245441

    Article  Google Scholar 

  66. Jiang J, Saito R, Samsonidze GG et al (2007) Chirality dependence of exciton effects in single-wall carbon nanotubes: tight-binding model. Phys Rev B 75:035407

    Article  Google Scholar 

  67. Popov VN (2004) Curvature effects on the structural, electronic and optical properties of isolated single-walled carbon nanotubes within a symmetry-adapted non-orthogonal tight-binding model. New J Phys 6:17

    Article  Google Scholar 

  68. Dresselhaus MS, Dresselhaus G, Charlier JC, Hernandez E (2004) Electronic, thermal and mechanical properties of carbon nanotubes. Philos Trans R Soc A Math Phys Eng Sci 362:2065–2098

    Article  Google Scholar 

  69. Dresselhaus MS, Dresselhaus G, Jorio A (2004) Unusual properties and structure of carbon nanotubes. Annu Rev Mater Res 34:247–278

    Article  Google Scholar 

  70. Krasheninnikov AV, Banhart F, Li JX et al (2005) Stability of carbon nanotubes under electron irradiation: role of tube diameter and chirality. Phys Rev B 72:125428

    Article  Google Scholar 

  71. Sun G, Kürti J, Kertesz M, Baughman RH (2003) Variations of the geometries and band gaps of single-walled carbon nanotubes and the effect of charge injection. J Phys Chem B 107:6924–6931

    Article  Google Scholar 

  72. Anantram MP, Léonard F (2006) Physics of carbon nanotube electronic devices. Reports Prog Phys 69:507–561

    Article  Google Scholar 

  73. Blase X, Benedict LX, Shirley EL, Louie SG (1994) Hybridization effects and metallicity in small radius carbon nanotubes. Phys Rev Lett 72:1878–1881

    Article  Google Scholar 

  74. Stéphan O, Ajayan PM, Colliex C et al (1996) Curvature-induced bonding changes in carbon nanotubes investigated by electron energy-loss spectrometry. Phys Rev B 53:13824–13829

    Article  Google Scholar 

  75. Cabria I, Mintmire JW, White CT (2003) Metallic and semiconducting narrow carbon nanotubes. Phys Rev B 67:121406

    Article  Google Scholar 

  76. Hasan T, Sun Z, Tan P et al (2014) Double-wall carbon nanotubes for wide-band, ultrafast pulse generation. ACS Nano 8:4836–4847

    Article  Google Scholar 

  77. Zhang R, Ning Z, Zhang Y et al (2013) Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat Nanotechnol 8:912–916

    Article  Google Scholar 

  78. Rümmeli MH, Schäffel F, Bachmatiuk A et al (2010) Investigating the outskirts of Fe and Co catalyst particles in alumina-supported catalytic CVD carbon nanotube growth. ACS Nano 4:1146–1152

    Article  Google Scholar 

  79. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  80. Rümmeli MH, Schäffel F, Kramberger C et al (2007) Oxide-driven carbon nanotube growth in supported catalyst CVD. J Am Chem Soc 129:15772–15773

    Article  Google Scholar 

  81. Borowiak-Palen E, Rümmeli MH (2009) Activated Cu catalysts for alcohol CVD synthesized non-magnetic bamboo-like carbon nanotubes and branched bamboo-like carbon nanotubes. Superlattices Microstruct 46:374–378

    Article  Google Scholar 

  82. Lin M, Tan JPY, Boothroyd C et al (2007) Dynamical observation of bamboo-like carbon nanotube growth. Nano Lett 7:2234–2238

    Article  Google Scholar 

  83. Hofmann S, Sharma R, Ducati C et al (2007) In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett 7:602–608

    Article  Google Scholar 

  84. Ouyang M, Huang J-L, Lieber CM (2002) Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc Chem Res 35:1018–1025

    Article  Google Scholar 

  85. Green AA, Hersam MC (2008) Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett 8:1417–1422

    Article  Google Scholar 

  86. Lieber CM, Odom TW, Huang J-L, Kim P (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391:62–64

    Article  Google Scholar 

  87. Sangwan VK, Ortiz RP, Alaboson JMP et al (2012) Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. ACS Nano 6:7480–7488

    Article  Google Scholar 

  88. Wang H, Luo J, Robertson A et al (2010) High-performance field effect transistors from solution processed carbon nanotubes. ACS Nano 4:6659–6664

    Article  Google Scholar 

  89. Rueckes T, Kim K, Joselevich E et al (2000) Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289:94–97

    Article  Google Scholar 

  90. Amade R, Vila-Costa M, Hussain S et al (2015) Vertically aligned carbon nanotubes coated with manganese dioxide as cathode material for microbial fuel cells. J Mater Sci 50:1214–1220

    Article  Google Scholar 

  91. Abbas SM, Hussain ST, Ali S et al (2013) Structure and electrochemical performance of ZnO/CNT composite as anode material for lithium-ion batteries. J Mater Sci 48:5429–5436

    Article  Google Scholar 

  92. Deng Q, Wang L, Li J (2015) Electrochemical characterization of Co3O4/MCNTs composite anode materials for sodium-ion batteries. J Mater Sci 50:4142–4148

    Article  Google Scholar 

  93. Fam DWH, Azoubel S, Liu L et al (2015) Novel felt pseudocapacitor based on carbon nanotube/metal oxides. J Mater Sci 50:6578–6585

    Article  Google Scholar 

  94. Hussain S, Amade R, Jover E, Bertran E (2013) Nitrogen plasma functionalization of carbon nanotubes for supercapacitor applications. J Mater Sci 48:7620–7628

    Article  Google Scholar 

  95. Byrappa K, Dayananda AS, Sajan CP et al (2008) Hydrothermal preparation of ZnO:CNT and TiO2:CNT composites and their photocatalytic applications. J Mater Sci 43:2348–2355

    Article  Google Scholar 

  96. Hu G, Meng X, Feng X et al (2007) Anatase TiO2 nanoparticles/carbon nanotubes nanofibers: preparation, characterization and photocatalytic properties. J Mater Sci 42:7162–7170

    Article  Google Scholar 

  97. Li X, Wei J, Chai Y et al (2015) Different polyaniline/carbon nanotube composites as Pt catalyst supports for methanol electro-oxidation. J Mater Sci 50:1159–1168

    Article  Google Scholar 

  98. Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes synthesis, structure, properties, and applications. Springer, Berlin

    Google Scholar 

  99. Louie SG (2001) Electronic properties, junctions, and defects of carbon nanotubes. Carbon Nanotub. Springer, Berlin, pp 113–145

    Chapter  Google Scholar 

  100. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Book  Google Scholar 

  101. Young PN, Kirkland IA, Briggs Andrew DG et al (2011) Resolving strain in carbon nanotubes at the atomic level. Nat Mater 10:958–962

    Article  Google Scholar 

  102. Dresselhaus MS, Avouris P Introduction to Carbon Materials Research. In: Carbon Nanotub. Springer Berlin Heidelberg, Heidelberg, pp 1–9

  103. Crespi VH, Cohen ML, Rubio A (1997) In situ band gap engineering of carbon nanotubes. Phys Rev Lett 79:2093–2096

    Article  Google Scholar 

  104. Odom TW, Hafner JH, Lieber CM (2001) Scanning probe microscopy studies of carbon nanotubes. Carbon Nanotub. Springer, Berlin, pp 173–211

    Chapter  Google Scholar 

  105. Ouyang M, Huang J-L, Cheung CL, Lieber CM (2001) Energy gaps in “metallic” single-walled carbon nanotubes. Science 292:702–705

    Article  Google Scholar 

  106. Zhou C, Kong J, Dai H (2000) Intrinsic electrical properties of individual single-walled carbon nanotubes with small band gaps. Phys Rev Lett 84:5604–5607

    Article  Google Scholar 

  107. Hamada N, Sawada S, Oshiyama A (1992) New one-dimensional conductors: graphitic microtubules. Phys Rev Lett 68:1579–1581

    Article  Google Scholar 

  108. Kane CL, Mele EJ (1997) Size, shape, and low energy electronic structure of carbon nanotubes. Phys Rev Lett 78:1932–1935

    Article  Google Scholar 

  109. Mintmire JW, White CT (1995) Electronic and structural properties of carbon nanotubes. Carbon 33:893–902

    Article  Google Scholar 

  110. Ding JW, Yan XH, Cao JX (2002) Analytical relation of band gaps to both chirality and diameter of single-wall carbon nanotubes. Phys Rev B 66:073401

    Article  Google Scholar 

  111. Dresselhaus MS, Dresselhaus G, Saito R (1992) C60-related tubules. Solid State Commun 84:201–205

    Article  Google Scholar 

  112. White CT, Robertson DH, Mintmire JW (1993) Helical and rotational symmetries of nanoscale graphitic tubules. Phys Rev B 47:5485–5488

    Article  Google Scholar 

  113. Hayashi T, Kim YA, Matoba T et al (2003) Smallest freestanding single-walled carbon nanotube. Nano Lett 3:887–889

    Article  Google Scholar 

  114. Weisman RB, Bachilo SM (2003) Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett 3:1235–1238

    Article  Google Scholar 

  115. O’Connell MJ, Bachilo SM, Huffman CB et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596

    Article  Google Scholar 

  116. Arnold MS, Green AA, Hulvat JF et al (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60–65

    Article  Google Scholar 

  117. Ebbesen TW, Takada T (1995) Topological and SP3 defect structures in nanotubes. Carbon 33:973–978

    Article  Google Scholar 

  118. Lambin P, Fonseca A, Vigneron JP et al (1995) Structural and electronic properties of bent carbon nanotubes. Chem Phys Lett 245:85–89

    Article  Google Scholar 

  119. Saito R, Dresselhaus G, Dresselhaus MS (1996) Tunneling conductance of connected carbon nanotubes. Phys Rev B 53:2044–2050

    Article  Google Scholar 

  120. Dunlap BI (1994) Relating carbon tubules. Phys Rev B 49:5643–5651

    Article  Google Scholar 

  121. Charlier J-C, Ebbesen TW, Lambin P (1996) Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. Phys Rev B 53:11108–11113

    Article  Google Scholar 

  122. Chico L, Crespi VH, Benedict LX et al (1996) Pure carbon nanoscale devices: nanotube heterojunctions. Phys Rev Lett 76:971–974

    Article  Google Scholar 

  123. Chico L, Benedict LX, Louie SG, Cohen ML (1996) Quantum conductance of carbon nanotubes with defects. Phys Rev B 54:2600–2606

    Article  Google Scholar 

  124. Wang B, Yanfeng M, Li N et al (2010) Facile and scalable fabrication of well-aligned and closely packed single-walled carbon nanotube films on various substrates. Adv Mater 22:3067–3070

    Article  Google Scholar 

  125. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975

    Article  Google Scholar 

  126. Dufresne A, Paillet M, Putaux JL et al (2002) Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites. J Mater Sci 37:3915–3923

    Article  Google Scholar 

  127. Hsieh TH, Kinloch AJ, Taylor AC, Kinloch IA (2011) The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. J Mater Sci 46:7525–7535

    Article  Google Scholar 

  128. Suhr J, Koratkar NA (2008) Energy dissipation in carbon nanotube composites: a review. J Mater Sci 43:4370–4382

    Article  Google Scholar 

  129. Bozovic D, Bockrath M, Hafner JH et al (2003) Plastic deformations in mechanically strained single-walled carbon nanotubes. Phys Rev B 67:033407

    Article  Google Scholar 

  130. Dieringa H (2011) Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review. J Mater Sci 46:289–306

    Article  Google Scholar 

  131. Cho J, Boccaccini AR, Shaffer MSP (2009) Ceramic matrix composites containing carbon nanotubes. J Mater Sci 44:1934–1951

    Article  Google Scholar 

  132. Kathi J, Rhee KY (2008) Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J Mater Sci 43:33–37

    Article  Google Scholar 

  133. Chen L, Chin LC, Ashby PD, Lieber CM (2004) Single-walled carbon nanotube AFM probes: optimal imaging resolution of nanoclusters and biomolecules in ambient and fluid environments. Nano Lett 4:1725–1731

    Article  Google Scholar 

  134. Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286:2148–2150

    Article  Google Scholar 

  135. Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502

    Article  Google Scholar 

  136. Yao Z, Wang J-S, Li B, Liu G-R (2005) Thermal conduction of carbon nanotubes using molecular dynamics. Phys Rev B 71:085417

    Article  Google Scholar 

  137. Iijima S (2002) Carbon nanotubes: past, present, and future. Phys B Condens Matter 323:1–5

    Article  Google Scholar 

  138. Bajpai A, Gorantla S, Löffler M et al (2012) The filling of carbon nanotubes with magnetoelectric Cr2O3. Carbon 50:1706–1709

    Article  Google Scholar 

  139. Cichocka MO, Zhao J, Bachmatiuk A et al (2014) In situ observations of Pt nanoparticles coalescing inside carbon nanotubes. RSC Adv 4:49442–49445

    Article  Google Scholar 

  140. Gorantla S, Börrnert F, Bachmatiuk A et al (2010) In situ observations of fullerene fusion and ejection in carbon nanotubes. Nanoscale 2:2077

    Article  Google Scholar 

  141. Pohl D, Schäffel F, Rümmeli MH et al (2011) Understanding the metal-carbon interface in FePt catalyzed carbon nanotubes. Phys Rev Lett 107:185501

    Article  Google Scholar 

  142. Dillon AC, Jones KM, Bekkedahl TA et al (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379

    Article  Google Scholar 

  143. Liu C, Chen Y, Wu C-Z et al (2010) Hydrogen storage in carbon nanotubes revisited. Carbon 48:452–455

    Article  Google Scholar 

  144. Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358

    Article  Google Scholar 

  145. Wang Q, Johnson JK (1999) Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores. J Chem Phys 110:577

    Article  Google Scholar 

  146. Byl O, Kondratyuk P, Yates JT (2003) Adsorption and dimerization of NO inside single-walled carbon nanotubes an infrared spectroscopic study. J Phys Chem B 107:4277–4279

    Article  Google Scholar 

  147. Fujiwara A, Ishii K, Suematsu H et al (2001) Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chem Phys Lett 336:205–211

    Article  Google Scholar 

  148. Kuznetsova A, Yates JT, Liu J, Smalley RE (2000) Physical adsorption of xenon in open single walled carbon nanotubes: observation of a quasi-one-dimensional confined Xe phase. J Chem Phys 112:9590

    Article  Google Scholar 

  149. Shiomi J, Maruyama S (2009) Water transport inside a single-walled carbon nanotube driven by a temperature gradient. Nanotechnology 20:055708

    Article  Google Scholar 

  150. Noy A, Park HG, Fornasiero F et al (2007) Nanofluidics in carbon nanotubes. Nano Today 2:22–29

    Article  Google Scholar 

  151. Maniwa Y, Matsuda K, Kyakuno H et al (2007) Water-filled single-wall carbon nanotubes as molecular nanovalves. Nat Mater 6:135–141

    Article  Google Scholar 

  152. Zhao Y, Song L, Deng K et al (2008) Individual water-filled single-walled carbon nanotubes as hydroelectric power converters. Adv Mater 20:1772–1776

    Article  Google Scholar 

  153. Maniwa Y, Kataura H, Abe M et al (2005) Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes. Chem Phys Lett 401:534–538

    Article  Google Scholar 

  154. Koga K, Gao GT, Tanaka H, Zeng XC (2001) Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412:802–805

    Article  Google Scholar 

  155. Pan X, Fan Z, Chen W et al (2007) Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat Mater 6:507–511

    Article  Google Scholar 

  156. Tessonnier J-P, Pesant L, Ehret G et al (2005) Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. Appl Catal A Gen 288:203–210

    Article  Google Scholar 

  157. Yoshitake T, Shimakawa Y, Kuroshima S et al (2002) Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application. Phys B Condens Matter 323:124–126

    Article  Google Scholar 

  158. Shiozawa H, Pichler T, Grüneis A et al (2008) A catalytic reaction inside a single-walled carbon nanotube. Adv Mater 20:1443–1449

    Article  Google Scholar 

  159. Pan X, Bao X (2011) The effects of confinement inside carbon nanotubes on catalysis. Acc Chem Res 44:553–562

    Article  Google Scholar 

  160. Chen W, Fan Z, Gu L et al (2010) Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes. Chem Commun 46:3905

    Article  Google Scholar 

  161. Yang C-K, Zhao J, Lu JP (2003) Magnetism of transition-metal/carbon-nanotube hybrid structures. Phys Rev Lett 90:257203

    Article  Google Scholar 

  162. Hirahara K, Suenaga K, Bandow S et al (2000) One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys Rev Lett 85:5384–5387

    Article  Google Scholar 

  163. Gao H, Kong Y, Cui D, Ozkan CS (2003) Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett 3:471–473

    Article  Google Scholar 

  164. Liu Z, Yanagi K, Suenaga K et al (2007) Imaging the dynamic behaviour of individual retinal chromophores confined inside carbon nanotubes. Nat Nanotechnol 2:422–425

    Article  Google Scholar 

  165. Kong J, Chapline MG, Dai H (2001) Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater 13:1384–1386

    Article  Google Scholar 

  166. Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839

    Article  Google Scholar 

  167. Chen RJ, Bangsaruntip S, Drouvalakis KA et al (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci 100:4984–4989

    Article  Google Scholar 

  168. Lieber CM, Wong SS, Joselevich E et al (1998) Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology. Nature 394:52–55

    Article  Google Scholar 

  169. Hain TC, Kröker K, Stich DG, Hertel T (2012) Influence of DNA conformation on the dispersion of SWNTs: single-strand DNA versus hairpin DNA. Soft Matter 8:2820

    Article  Google Scholar 

  170. Sun H, She P, Lu G et al (2014) Recent advances in the development of functionalized carbon nanotubes: a versatile vector for drug delivery. J Mater Sci 49:6845–6854

    Article  Google Scholar 

  171. Ayala P, Plank W, Grüneis A et al (2008) A one step approach to B-doped single-walled carbon nanotubes. J Mater Chem 18:5676–5681

    Article  Google Scholar 

  172. Gong K, Du F, Xia Z et al (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764

    Article  Google Scholar 

  173. Yu D, Zhang Q, Dai L (2010) Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. J Am Chem Soc 132:15127–15129

    Article  Google Scholar 

  174. Chopra NG, Luyken RJ, Cherrey K et al (1995) Boron nitride nanotubes. Science 269:966–967

    Article  Google Scholar 

  175. Gonzalez-Martinez IG, Gorantla SM, Bachmatiuk A et al (2014) Room temperature in situ growth of B/BOx nanowires and BOx nanotubes. Nano Lett 14:799–805

    Article  Google Scholar 

  176. Lourie OR, Jones CR, Bartlett BM et al (2000) CVD growth of boron nitride nanotubes. Chem Mater 12:1808–1810

    Article  Google Scholar 

  177. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  178. Makharza S, Cirillo G, Bachmatiuk A et al (2013) Graphene oxide-based drug delivery vehicles: functionalization, characterization, and cytotoxicity evaluation. J Nanoparticle Res 15:2099

    Article  Google Scholar 

  179. Stankovich S, Dikin AD, Piner DR et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  Google Scholar 

  180. Tamboli SH, Kim BS, Choi G et al (2014) Post-heating effects on the physical and electrochemical capacitive properties of reduced graphene oxide paper. J Mater Chem A 2:5077

    Article  Google Scholar 

  181. Liang YT, Hersam MC (2010) Highly concentrated graphene solutions via polymer enhanced solvent exfoliation and iterative solvent exchange. J Am Chem Soc 132:17661–17663

    Article  Google Scholar 

  182. Wang J, Manga KK, Bao Q, Loh KP (2011) High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J Am Chem Soc 133:8888–8891

    Article  Google Scholar 

  183. Jiao L, Zhang L, Ding L et al (2010) Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes. Nano Res 3:387–394

    Article  Google Scholar 

  184. Li X, Wang X, Zhang L et al (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232

    Article  Google Scholar 

  185. Cai J, Ruffieux P, Jaafar R et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473

    Article  Google Scholar 

  186. Emtsev KV, Speck F, Seyller T et al (2008) Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: a comparative photoelectron spectroscopy study. Phys Rev B 77:155303

    Article  Google Scholar 

  187. Emtsev KV, Bostwick A, Horn K et al (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8:203–207

    Article  Google Scholar 

  188. Dai B, Fu L, Zou Z et al (2011) Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nat Commun 2:522

    Article  Google Scholar 

  189. Liu X, Fu L, Liu N et al (2011) Segregation growth of graphene on Cu-Ni alloy for precise layer control. J Phys Chem C 115:11976–11982

    Article  Google Scholar 

  190. Rümmeli MH, Zeng M, Melkhanova S et al (2013) Insights into the early growth of homogeneous single-layer graphene over Ni-Mo binary substrates. Chem Mater 25:3880–3887

    Article  Google Scholar 

  191. Zou Z, Fu L, Song X et al (2014) Carbide-forming groups IVB-VIB metals: a new territory in the periodic table for CVD growth of graphene. Nano Lett 14:3832–3839

    Article  Google Scholar 

  192. Pang J, Bachmatiuk A, Fu L et al (2015) Direct synthesis of graphene from adsorbed organic solvent molecules over copper. RSC Adv 5:60884–60891

    Article  Google Scholar 

  193. Mendes RG, Bachmatiuk A, El-Gendy AA et al (2012) A Facile route to coat iron oxide nanoparticles with few-layer graphene. J Phys Chem C 116:23749–23756

    Article  Google Scholar 

  194. Li X, Cai W, An J et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314

    Article  Google Scholar 

  195. Pang J, Bachmatiuk A, Fu L et al (2015) Oxidation as a means to remove surface contaminants on Cu foil prior to graphene growth by chemical vapor deposition. J Phys Chem C 119:13363–13368

    Article  Google Scholar 

  196. Rümmeli MH, Gorantla S, Bachmatiuk A et al (2013) On the role of vapor trapping for chemical vapor deposition (CVD) grown graphene over copper. Chem Mater 25:4861–4866

    Article  Google Scholar 

  197. Riikonen J, Kim W, Li C et al (2013) Photo-thermal chemical vapor deposition of graphene on copper. Carbon 62:43–50

    Article  Google Scholar 

  198. Kim SM, Hsu A, Lee Y et al (2013) The effect of copper pre-cleaning on graphene synthesis. Nanotechnology 24:365602

    Article  Google Scholar 

  199. Hao Y, Bharathi MS, Wang L et al (2013) The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342:720–723

    Article  Google Scholar 

  200. Luo Z, Lu Y, Singer DW et al (2011) Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem Mater 23:1441–1447

    Article  Google Scholar 

  201. Procházka P, Mach J, Bischoff D et al (2014) Ultrasmooth metallic foils for growth of high quality graphene by chemical vapor deposition. Nanotechnology 25:185601

    Article  Google Scholar 

  202. Eres G, Regmi M, Rouleau CM et al (2014) Cooperative island growth of large-area single-crystal graphene on copper using chemical vapor deposition. ACS Nano 8:5657–5669

    Article  Google Scholar 

  203. Tan L, Zeng M, Zhang T, Fu L (2015) Design of catalytic substrates for uniform graphene films: from solid-metal to liquid-metal. Nanoscale 7:9105–9121

    Article  Google Scholar 

  204. Zeng M, Tan L, Wang J et al (2014) Liquid metal: an innovative solution to uniform graphene films. Chem Mater 26:3637–3643

    Article  Google Scholar 

  205. Magnuson CW, Kong X, Ji H et al (2014) Copper oxide as a “self-cleaning” substrate for graphene growth. J Mater Res 29:403–409

    Article  Google Scholar 

  206. Vlassiouk I, Regmi M, Fulvio P et al (2011) Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5:6069–6076

    Article  Google Scholar 

  207. Han GH, Güneş F, Bae JJ et al (2011) Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett 11:4144–4148

    Article  Google Scholar 

  208. Kim KSKS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  Google Scholar 

  209. Tan L, Zeng M, Wu Q et al (2015) Direct growth of ultrafast transparent single-layer graphene defoggers. Small 11:1840–1846

    Article  Google Scholar 

  210. Chen J, Wen Y, Guo Y et al (2011) Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J Am Chem Soc 133:17548–17551

    Article  Google Scholar 

  211. Sutter P, Hybertsen MS, Sadowski JT, Sutter E (2009) Electronic structure of few-layer epitaxial graphene on Ru(0001). Nano Lett 9:2654–2660

    Article  Google Scholar 

  212. Ramón ME, Gupta A, Corbet C et al (2011) CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films. ACS Nano 5:7198–7204

    Article  Google Scholar 

  213. An H, Lee W-J, Jung J (2011) Graphene synthesis on Fe foil using thermal CVD. Curr Appl Phys 11:S81–S85

    Article  Google Scholar 

  214. John R, Ashokreddy A, Vijayan C, Pradeep T (2011) Single- and few-layer graphene growth on stainless steel substrates by direct thermal chemical vapor deposition. Nanotechnology 22:165701

    Article  Google Scholar 

  215. Kiraly B, Iski EV, Mannix AJ et al (2013) Solid-source growth and atomic-scale characterization of graphene on Ag(111). Nat Commun 4:2804

    Article  Google Scholar 

  216. Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35

    Article  Google Scholar 

  217. Reina A, Thiele S, Jia X et al (2009) Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res 2:509–516

    Article  Google Scholar 

  218. Li X, Cai W, Colombo L et al (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9:4268–4272

    Article  Google Scholar 

  219. Bae S, Kim H, Lee Y et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578

    Article  Google Scholar 

  220. Tao L, Lee J, Chou H et al (2012) Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films. ACS Nano 6:2319–2325

    Article  Google Scholar 

  221. Ismach A, Druzgalski C, Penwell S et al (2010) Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett 10:1542–1548

    Article  Google Scholar 

  222. Chen J, Guo Y, Jiang L et al (2014) Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates. Adv Mater 26:1348–1353

    Article  Google Scholar 

  223. Hwang J, Kim M, Campbell D et al (2013) Van der waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. ACS Nano 7:385–395

    Article  Google Scholar 

  224. Chen J, Guo Y, Wen Y et al (2013) Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates. Adv Mater 25:992–997

    Article  Google Scholar 

  225. Rümmeli MH, Bachmatiuk A, Scott A et al (2010) Direct low-temperature nanographene cvd synthesis over a dielectric insulator. ACS Nano 4:4206–4210

    Article  Google Scholar 

  226. Ding X, Ding G, Xie X et al (2011) Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition. Carbon 49:2522–2525

    Article  Google Scholar 

  227. Garcia JM, Wurstbauer U, Levy A et al (2012) Graphene growth on h-BN by molecular beam epitaxy. Solid State Commun 152:975–978

    Article  Google Scholar 

  228. Tang S, Ding G, Xie X et al (2012) Nucleation and growth of single crystal graphene on hexagonal boron nitride. Carbon 50:329–331

    Article  Google Scholar 

  229. Chugh S, Mehta R, Lu N et al (2015) Comparison of graphene growth on arbitrary non-catalytic substrates using low-temperature PECVD. Carbon 93:393–399

    Article  Google Scholar 

  230. Kato T, Hatakeyama R (2012) Direct growth of doping-density-controlled hexagonal graphene on SiO2 substrate by rapid-heating plasma CVD. ACS Nano 6:8508–8515

    Article  Google Scholar 

  231. Li X, Magnuson CW, Venugopal A et al (2011) Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc 133:2816–2819

    Article  Google Scholar 

  232. Li X, Magnuson CW, Venugopal A et al (2010) Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett 10:4328–4334

    Article  Google Scholar 

  233. Mehdipour H, Ostrikov K (2012) Kinetics of low-pressure, low-temperature graphene growth: toward single-layer, single-crystalline structure. ACS Nano 6:10276–10286

    Article  Google Scholar 

  234. Radhakrishnan G, Adams PM, Stapleton AD et al (2011) Large single-crystal monolayer graphene by decomposition of methanol. Appl Phys A 105:31–37

    Article  Google Scholar 

  235. Gadipelli S, Calizo I, Ford J et al (2011) A highly practical route for large-area, single layer graphene from liquid carbon sources such as benzene and methanol. J Mater Chem 21:16057

    Article  Google Scholar 

  236. Paul RK, Badhulika S, Niyogi S et al (2011) The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition. Carbon 49:3789–3795

    Article  Google Scholar 

  237. Zhao P, Hou B, Chen X et al (2013) Investigation of non-segregation graphene growth on Ni via isotope-labeled alcohol catalytic chemical vapor deposition. Nanoscale 5:6530

    Article  Google Scholar 

  238. Guermoune A, Chari T, Popescu F et al (2011) Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 49:4204–4210

    Article  Google Scholar 

  239. Myint M, Yan Y, Chen JG (2014) Reaction pathways of propanal and 1-propanol on Fe/Ni(111) and Cu/Ni(111) bimetallic surfaces. J Phys Chem C 118:11340–11349

    Article  Google Scholar 

  240. Lisi N, Buonocore F, Dikonimos T et al (2014) Rapid and highly efficient growth of graphene on copper by chemical vapor deposition of ethanol. Thin Solid Films 571:139–144

    Article  Google Scholar 

  241. Dong X, Wang P, Fang W et al (2011) Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure. Carbon 49:3672–3678

    Article  Google Scholar 

  242. Gao H, Liu Z, Song L et al (2012) Synthesis of S-doped graphene by liquid precursor. Nanotechnology 23:275605

    Article  Google Scholar 

  243. Gullapalli H, Mohana Reddy AL, Kilpatrick S et al (2011) Graphene growth via carburization of stainless steel and application in energy storage. Small 7:1697–1700

    Article  Google Scholar 

  244. Gan X, Zhou H, Zhu B et al (2012) A simple method to synthesize graphene at 633 K by dechlorination of hexachlorobenzene on Cu foils. Carbon 50:306–310

    Article  Google Scholar 

  245. Dai G-P, Cooke PH, Deng S (2012) Direct growth of graphene films on TEM nickel grids using benzene as precursor. Chem Phys Lett 531:193–196

    Article  Google Scholar 

  246. Wan X, Chen K, Liu D et al (2012) High-quality large-area graphene from dehydrogenated polycyclic aromatic hydrocarbons. Chem Mater 24:3906–3915

    Article  Google Scholar 

  247. Kang D, Kim W-J, Lim JA, Song Y-W (2012) Direct growth and patterning of multilayer graphene onto a targeted substrate without an external carbon source. ACS Appl Mater Interfaces 4:3663–3666

    Article  Google Scholar 

  248. Lee JS, Jang CW, Kim JM et al (2014) Graphene synthesis by C implantation into Cu foils. Carbon 66:267–271

    Article  Google Scholar 

  249. Hackley J, Ali D, DiPasquale J et al (2009) Graphitic carbon growth on Si(111) using solid source molecular beam epitaxy. Appl Phys Lett 95:133114

    Article  Google Scholar 

  250. Ji H, Hao Y, Ren Y et al (2011) Graphene growth using a solid carbon feedstock and hydrogen. ACS Nano 5:7656–7661

    Article  Google Scholar 

  251. Weatherup RS, Baehtz C, Dlubak B et al (2013) Introducing carbon diffusion barriers for uniform, high-quality graphene growth from solid sources. Nano Lett 13:4624–4631

    Article  Google Scholar 

  252. Shin H-J, Choi WM, Yoon S-M et al (2011) Transfer-free growth of few-layer graphene by self-assembled monolayers. Adv Mater 23:4392–4397

    Article  Google Scholar 

  253. Kalita G, Sharma S, Wakita K et al (2012) Synthesis of graphene by surface wave plasma chemical vapor deposition from camphor. Phys Status Solidi 209:2510–2513

    Article  Google Scholar 

  254. Kalita G, Wakita K, Umeno M (2011) Monolayer graphene from a green solid precursor. Phys E Low-dimensional Syst Nanostructures 43:1490–1493

    Article  Google Scholar 

  255. Sharma S, Kalita G, Ayhan ME et al (2013) Synthesis of hexagonal graphene on polycrystalline Cu foil from solid camphor by atmospheric pressure chemical vapor deposition. J Mater Sci 48:7036–7041

    Article  Google Scholar 

  256. Sharma S, Kalita G, Hirano R et al (2013) Influence of gas composition on the formation of graphene domain synthesized from camphor. Mater Lett 93:258–262

    Article  Google Scholar 

  257. Sokolov AN, Yap FL, Liu N et al (2013) Direct growth of aligned graphitic nanoribbons from a DNA template by chemical vapour deposition. Nat Commun 4:2402

    Article  Google Scholar 

  258. Ruan G, Sun Z, Peng Z, Tour JM (2011) Growth of graphene from food, insects, and waste. ACS Nano 5:7601–7607

    Article  Google Scholar 

  259. Ray AK, Sahu RK, Rajinikanth V et al (2012) Preparation and characterization of graphene and Ni-decorated graphene using flower petals as the precursor material. Carbon 50:4123–4129

    Article  Google Scholar 

  260. Hong N, Yang W, Bao C et al (2012) Facile synthesis of graphene by pyrolysis of poly(methyl methacrylate) on nickel particles in the confined microzones. Mater Res Bull 47:4082–4088

    Article  Google Scholar 

  261. Kwak J, Kwon T-Y, Chu JH et al (2013) In situ observations of gas phase dynamics during graphene growth using solid-state carbon sources. Phys Chem Chem Phys 15:10446

    Article  Google Scholar 

  262. Lee S, Hong J, Koo JH et al (2013) Synthesis of few-layered graphene nanoballs with copper cores using solid carbon source. ACS Appl Mater Interfaces 5:2432–2437

    Article  Google Scholar 

  263. Li Z, Wu P, Wang C et al (2011) Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources. ACS Nano 5:3385–3390

    Article  Google Scholar 

  264. Lin T, Wang Y, Bi H et al (2012) Hydrogen flame synthesis of few-layer graphene from a solid carbon source on hexagonal boron nitride. J Mater Chem 22:2859

    Article  Google Scholar 

  265. Sun Z, Yan Z, Yao J et al (2010) Growth of graphene from solid carbon sources. Nature 468:549–552

    Article  Google Scholar 

  266. Tiwari RN, Ishihara M, Tiwari JN, Yoshimura M (2012) Transformation of polymer to graphene films at partially low temperature. Polym Chem 3:2712

    Article  Google Scholar 

  267. Suzuki S, Takei Y, Furukawa K, Hibino H (2011) Graphene growth from a spin-coated polymer without a reactive gas. Appl Phys Express 4:065102

    Article  Google Scholar 

  268. Sharma S, Kalita G, Hirano R et al (2014) Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition. Carbon 72:66–73

    Article  Google Scholar 

  269. Huang L, Wind SJ, O’Brien SP (2003) Controlled growth of single-walled carbon nanotubes from an ordered mesoporous silica template. Nano Lett 3:299–303

    Article  Google Scholar 

  270. Homma Y, Kobayashi Y, Ogino T et al (2003) Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. J Phys Chem B 107:12161–12164

    Article  Google Scholar 

  271. Lin JH, Chen CS, Rümmeli MH et al (2011) Growth of carbon nanotubes catalyzed by defect-rich graphite surfaces. Chem Mater 23:1637–1639

    Article  Google Scholar 

  272. Lin J-H, Chen C-S, Ma H-L et al (2008) Self-assembling of multi-walled carbon nanotubes on a porous carbon surface by catalyst-free chemical vapor deposition. Carbon 46:1619–1623

    Article  Google Scholar 

  273. Qian W, Liu T, Wei F et al (2003) The evaluation of the gross defects of carbon nanotubes in a continuous CVD process. Carbon 41:2613–2617

    Article  Google Scholar 

  274. Zhang X, Zhang J, Wang R, Liu Z (2004) Cationic surfactant directed polyaniline/CNT nanocables: synthesis, characterization, and enhanced electrical properties. Carbon 42:1455–1461

    Article  Google Scholar 

  275. Zheng F, Liang Gao Y et al (2002) Carbon nanotube synthesis using mesoporous silica templates. Nano Lett 2:729–732

    Article  Google Scholar 

  276. Couteau E, Hernadi K, Seo JW et al (2003) CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production. Chem Phys Lett 378:9–17

    Article  Google Scholar 

  277. Eres G, Puretzky AA, Geohegan DB, Cui H (2004) In situ control of the catalyst efficiency in chemical vapor deposition of vertically aligned carbon nanotubes on predeposited metal catalyst films. Appl Phys Lett 84:1759

    Article  Google Scholar 

  278. Sato S, Kawabata A, Nihei M, Awano Y (2003) Growth of diameter-controlled carbon nanotubes using monodisperse nickel nanoparticles obtained with a differential mobility analyzer. Chem Phys Lett 382:361–366

    Article  Google Scholar 

  279. Ibrahim I, Kalbacova J, Engemaier V et al (2015) Confirming the dual role of etchants during the enrichment of semiconducting single wall carbon nanotubes by chemical vapor deposition. Chem Mater. doi:10.1021/acs.chemmater.5b02037

    Google Scholar 

  280. Bachmatiuk A, Borowiak-Palen E, Rümmeli MH et al (2007) Facilitating the CVD synthesis of seamless double-walled carbon nanotubes. Nanotechnology 18:275610

    Article  Google Scholar 

  281. Bachmatiuk A, Börrnert F, Grobosch M et al (2009) Investigating the graphitization mechanism of SiO2 nanoparticles in chemical vapor deposition. ACS Nano 3:4098–4104

    Article  Google Scholar 

  282. Borowiak-Palen E, Bachmatiuk A, Rümmeli MH et al (2008) Modifying CVD synthesised carbon nanotubes via the carbon feed rate. Phys E Low-dimensional Syst Nanostructures 40:2227–2230

    Article  Google Scholar 

  283. Qi H, Qian C, Liu J (2006) Synthesis of high-purity few-walled carbon nanotubes from ethanol/methanol mixture. Chem Mater 18:5691–5695

    Article  Google Scholar 

  284. Reina A, Hofmann M, Zhu D, Kong J (2007) Growth mechanism of long and horizontally aligned carbon nanotubes by chemical vapor deposition. J Phys Chem C 111:7292–7297

    Article  Google Scholar 

  285. Liu Y, Pan C, Wang J (2004) Raman spectra of carbon nanotubes and nanofibers prepared by ethanol flames. J Mater Sci 39:1091–1094

    Article  Google Scholar 

  286. Das N, Dalai A, Soltan Mohammadzadeh JS, Adjaye J (2006) The effect of feedstock and process conditions on the synthesis of high purity CNTs from aromatic hydrocarbons. Carbon 44:2236–2245

    Article  Google Scholar 

  287. Shukla B, Saito T, Yumura M, Iijima S (2009) An efficient carbon precursor for gas phase growth of SWCNTs. Chem Commun 23:3422–3424

    Article  Google Scholar 

  288. Tian Y, Hu Z, Yang Y et al (2004) In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor. J Am Chem Soc 126:1180–1183

    Article  Google Scholar 

  289. Dai H, Rinzler AG, Nikolaev P et al (1996) Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett 260:471–475

    Article  Google Scholar 

  290. Hsieh Y-P, Hofmann M, Kong J (2014) Promoter-assisted chemical vapor deposition of graphene. Carbon 67:417–423

    Article  Google Scholar 

  291. Kim H, Mattevi C, Calvo MR et al (2012) Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 6:3614–3623

    Article  Google Scholar 

  292. Vlassiouk I, Smirnov S, Regmi M et al (2013) Graphene nucleation density on copper: fundamental role of background pressure. J Phys Chem C 117:18919–18926

    Article  Google Scholar 

  293. Celebi K, Cole MT, Choi JW et al (2013) Evolutionary kinetics of graphene formation on copper. Nano Lett 13:967–974

    Article  Google Scholar 

  294. Xu L, Jin Y, Wu Z et al (2013) Transformation of carbon monomers and dimers to graphene islands on Co(0001): thermodynamics and kinetics. J Phys Chem C 117:2952–2958

    Article  Google Scholar 

  295. Loginova E, Bartelt NC, Feibelman PJ, McCarty KF (2008) Evidence for graphene growth by C cluster attachment. New J Phys 10:093026

    Article  Google Scholar 

  296. Kim YS, Joo K, Jerng SK et al (2014) Direct integration of polycrystalline graphene into light emitting diodes by plasma-assisted metal-catalyst-free synthesis. ACS Nano 8:2230–2236

    Article  Google Scholar 

  297. Kim H, Saiz E, Chhowalla M, Mattevi C (2013) Modeling of the self-limited growth in catalytic chemical vapor deposition of graphene. New J Phys 15:053012

    Article  Google Scholar 

  298. Bhaviripudi S, Jia X, Dresselhaus MS, Kong J (2010) Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett 10:4128–4133

    Article  Google Scholar 

  299. Chen C-JCJ, Back MH, Back RA (1975) The thermal decomposition of methane. I. kinetics of the primary decomposition to C2H6 + H2; rate constant for the homogeneous unimolecular dissociation of methane and its pressure dependence. Can J Chem 53:3580–3590

    Article  Google Scholar 

  300. Alstrup I, Chorkendorff I, Ullmann S (1992) The interaction of CH4 at high temperatures with clean and oxygen precovered Cu(100). Surf Sci 264:95–102

    Article  Google Scholar 

  301. Zhang Y, Zhang L, Kim P et al (2012) Vapor trapping growth of single-crystalline graphene flowers: synthesis, morphology, and electronic properties. Nano Lett 12:2810–2816

    Article  Google Scholar 

  302. Kidambi PR, Bayer BC, Blume R et al (2013) Observing graphene grow: catalyst-graphene interactions during scalable graphene growth on polycrystalline copper. Nano Lett 13:4769–4778

    Article  Google Scholar 

  303. Wang Z-J, Weinberg G, Zhang Q et al (2015) Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 9:1506–1519

    Article  Google Scholar 

  304. N’Diaye AT, van Gastel R, Martínez-Galera AJ et al (2009) In situ observation of stress relaxation in epitaxial graphene. New J Phys 11:113056

    Article  Google Scholar 

  305. Nie S, Walter AL, Bartelt NC et al (2011) Growth from below: graphene bilayers on Ir(111). ACS Nano 5:2298–2306

    Article  Google Scholar 

  306. Weatherup RS, Bayer BC, Blume R et al (2011) In situ characterization of alloy catalysts for low-temperature graphene growth. Nano Lett 11:4154–4160

    Article  Google Scholar 

  307. Xing S, Wu W, Wang Y et al (2013) Kinetic study of graphene growth: temperature perspective on growth rate and film thickness by chemical vapor deposition. Chem Phys Lett 580:62–66

    Article  Google Scholar 

  308. Colombo L, Li X, Han B et al (2010) Growth kinetics and defects of CVD graphene on Cu. ECS Trans 28(5):109–114

    Article  Google Scholar 

  309. Han Z, Kimouche A, Kalita D et al (2014) Homogeneous optical and electronic properties of graphene due to the suppression of multilayer patches during CVD on copper foils. Adv Funct Mater 24:964–970

    Article  Google Scholar 

  310. Fang W, Hsu A, Shin YC et al (2015) Application of tungsten as a carbon sink for synthesis of large-domain uniform monolayer graphene free of bilayers/multilayers. Nanoscale 7:4929–4934

    Article  Google Scholar 

  311. Pan Z, Liu N, Fu L, Liu Z (2011) Wrinkle engineering: a new approach to massive graphene nanoribbon arrays. J Am Chem Soc 133:17578–17581

    Article  Google Scholar 

  312. Fang W, Hsu AL, Caudillo R et al (2013) Rapid identification of stacking orientation in isotopically labeled chemical-vapor grown bilayer graphene by raman spectroscopy. Nano Lett 13:1541–1548

    Google Scholar 

  313. Li Q, Chou H, Zhong J-H et al (2013) Growth of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett 13:486–490

    Article  Google Scholar 

  314. Nie S, Wu W, Xing S et al (2012) Growth from below: bilayer graphene on copper by chemical vapor deposition. New J Phys 14:093028

    Article  Google Scholar 

  315. Kalbac M, Frank O, Kavan L (2012) The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition. Carbon 50:3682–3687

    Article  Google Scholar 

  316. Robertson AW, Warner JH (2011) Hexagonal Single crystal domains of few-layer graphene on copper foils. Nano Lett 11:1182–1189

    Article  Google Scholar 

  317. Geng D, Wu B, Guo Y et al (2012) Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc Natl Acad Sci 109:7992–7996

    Article  Google Scholar 

  318. Wang J, Zeng M, Tan L et al (2013) High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth. Sci Rep 3:2670

    Google Scholar 

  319. Wu Y, Hao Y, Jeong HY et al (2013) Crystal structure evolution of individual graphene islands during CVD growth on copper foil. Adv Mater 25:6744–6751

    Article  Google Scholar 

  320. Murdock AT, Koos A, Ben Britton T et al (2013) Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano 7:1351–1359

    Article  Google Scholar 

  321. Hayashi K, Sato S, Ikeda M et al (2012) Selective graphene formation on copper twin crystals. J Am Chem Soc 134:12492–12498

    Article  Google Scholar 

  322. Wood JD, Schmucker SW, Lyons AS et al (2011) Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett 11:4547–4554

    Article  Google Scholar 

  323. Dai G-P, Wu MH, Taylor DK, Vinodgopal K (2013) Square-shaped, single-crystal, monolayer graphene domains by low-pressure chemical vapor deposition. Mater Res Lett 1:67–76

    Article  Google Scholar 

  324. Son IH, Song HJ, Kwon S et al (2014) CO2 enhanced chemical vapor deposition growth of few-layer graphene over NiOx. ACS Nano 8:9224–9232

    Article  Google Scholar 

  325. Natesan K, Kassner TF (1973) Thermodynamics of carbon in nickel, iron-nickel and iron-chromium-nickel alloys. Metall Trans 4:2557–2566

    Article  Google Scholar 

  326. Delamoreanu A, Rabot C, Vallee C, Zenasni A (2014) Wafer scale catalytic growth of graphene on nickel by solid carbon source. Carbon 66:48–56

    Article  Google Scholar 

  327. Lahiri J, Miller T, Adamska L et al (2011) Graphene growth on Ni(111) by transformation of a surface carbide. Nano Lett 11:518–522

    Article  Google Scholar 

  328. Thiele S, Reina A, Healey P et al (2010) Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films. Nanotechnology 21:015601

    Article  Google Scholar 

  329. Kim H, Song I, Park C et al (2013) Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano 7:6575–6582

    Article  Google Scholar 

  330. Zhang L, Shi Z, Liu D et al (2012) Vapour-phase graphene epitaxy at low temperatures. Nano Res 5:258–264

    Article  Google Scholar 

  331. Wei D, Lu Y, Han C et al (2013) Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices. Angew Chemie Int Ed 52:14121–14126

    Article  Google Scholar 

  332. Li X, Zhu Y, Cai W et al (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9:4359–4363

    Article  Google Scholar 

  333. Suk JW, Kitt A, Magnuson CW et al (2011) Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5:6916–6924

    Article  Google Scholar 

  334. O’Hern SC, Stewart CA, Boutilier MSH et al (2012) Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6:10130–10138

    Article  Google Scholar 

  335. Pirkle A, Chan J, Venugopal A et al (2011) The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl Phys Lett 99:122108

    Article  Google Scholar 

  336. Lin Y-C, Jin C, Lee J-C et al (2011) Clean transfer of graphene for isolation and suspension. ACS Nano 5:2362–2368

    Article  Google Scholar 

  337. Gorantla S, Bachmatiuk A, Hwang J et al (2014) A universal transfer route for graphene. Nanoscale 6:889–896

    Article  Google Scholar 

  338. Gao L, Ren W, Xu H et al (2012) Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun 3:699

    Article  Google Scholar 

  339. Wang Y, Zheng Y, Xu X et al (2011) Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5:9927–9933

    Article  Google Scholar 

  340. Lin W-HH, Chen T-HH, Chang J-KK et al (2014) A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate. ACS Nano 8:1784–1791

    Article  Google Scholar 

  341. Na SR, Suk JW, Tao L et al (2015) Selective mechanical transfer of graphene from seed copper foil using rate effects. ACS Nano 9:1325–1335

    Article  Google Scholar 

  342. Lee WH, Suk JW, Lee J et al (2012) Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic. ACS Nano 6:1284–1290

    Article  Google Scholar 

  343. Gao L, Ni G-X, Liu Y et al (2013) Face-to-face transfer of wafer-scale graphene films. Nature 505:190–194

    Article  Google Scholar 

  344. Ding L, Tselev A, Wang J et al (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9:800–805

    Article  Google Scholar 

  345. Williams KR, Gupta K, Wasilik M (2003) Etch rates for micromachining processing-part II. J Microelectromechanical Syst 12(6):761–778

    Article  Google Scholar 

  346. Rümmeli M, Bachmatiuk A, Börrnert F et al (2011) Synthesis of carbon nanotubes with and without catalyst particles. Nanoscale Res Lett 6:303

    Article  Google Scholar 

  347. Ding L, Zhou W, McNicholas TP et al (2009) Direct observation of the strong interaction between carbon nanotubes and quartz substrate. Nano Res 2:903–910

    Article  Google Scholar 

  348. Ibrahim I, Bachmatiuk A, Börrnert F et al (2011) Optimizing substrate surface and catalyst conditions for high yield chemical vapor deposition grown epitaxially aligned single-walled carbon nanotubes. Carbon 49:5029–5037

    Article  Google Scholar 

  349. Ci L, Rao Z, Zhou Z et al (2002) Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system. Chem Phys Lett 359:63–67

    Article  Google Scholar 

  350. Loffler M, Rummeli MH, Kramberger C et al (2008) On the formation of single-walled carbon nanotubes in pulsed-laser-assisted chemical vapor deposition. Chem Mater 20:128–134

    Article  Google Scholar 

  351. Hata K, Futaba D, Mizuno K et al (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–1364

    Article  Google Scholar 

  352. Yamada T, Namai T, Hata K et al (2006) Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat Nanotechnol 1:131–136

    Article  Google Scholar 

  353. Huang S, Cai X, Liu J (2003) Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J Am Chem Soc 125:5636–5637

    Article  Google Scholar 

  354. Ibrahim I, Bachmatiuk A, Grimm D et al (2012) Understanding high-yield catalyst-free growth of horizontally aligned single-walled carbon nanotubes nucleated by activated C60 species. ACS Nano 6:10825–10834

    Google Scholar 

  355. Ibrahim I, Bachmatiuk A, Warner JH et al (2012) CVD-grown horizontally aligned single-walled carbon nanotubes: synthesis routes and growth mechanisms. Small 8:1973–1992

    Article  Google Scholar 

  356. Joselevich E, Lieber CM (2002) Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett 2:1137–1141

    Article  Google Scholar 

  357. Liu B, Ren W, Gao L et al (2009) Metal-catalyst-free growth of single-walled carbon nanotubes. J Am Chem Soc 131:2082–2083

    Article  Google Scholar 

  358. Maruyama S, Kojima R, Miyauchi Y et al (2002) Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem Phys Lett 360:229–234

    Article  Google Scholar 

  359. Takagi D, Kobayashi Y, Homma Y (2009) Carbon nanotube growth from diamond. J Am Chem Soc 131:6922–6923

    Article  Google Scholar 

  360. Liu J, Wang C, Tu X et al (2012) Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Nat Commun 3:1199

    Article  Google Scholar 

  361. Yao Y, Feng C, Zhang J, Liu Z (2009) Cloning of single-walled carbon nanotubes via open-end growth mechanism. Nano Lett 9:1673–1677

    Article  Google Scholar 

  362. Cheng H-C, Lin K-C, Tai H-C et al (2007) Growth and field emission characteristics of carbon nanotubes using Co/Cr/Al multilayer catalyst. Jpn J Appl Phys 46:4359–4363

    Article  Google Scholar 

  363. Chhowalla M, Teo KBK, Ducati C et al (2001) Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys 90:5308

    Article  Google Scholar 

  364. Ducati C, Alexandrou I, Chhowalla M et al (2002) Temperature selective growth of carbon nanotubes by chemical vapor deposition. J Appl Phys 92:3299–3303

    Article  Google Scholar 

  365. Kim K-EK-J, Kim K-EK-J, Jung WS et al (2005) Investigation on the temperature-dependent growth rate of carbon nanotubes using chemical vapor deposition of ferrocene and acetylene. Chem Phys Lett 401:459–464

    Article  Google Scholar 

  366. Picher M, Navas H, Arenal R et al (2012) Influence of the growth conditions on the defect density of single-walled carbon nanotubes. Carbon 50:2407–2416

    Article  Google Scholar 

  367. Hofmann S, Ducati C, Kleinsorge B, Robertson J (2003) Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Appl Phys Lett 83:4661–4663

    Article  Google Scholar 

  368. Ding F, Bolton K, Rosén A (2004) Nucleation and growth of single-walled carbon nanotubes: a molecular dynamics study. J Phys Chem B. 108(45):17369–17377

    Article  Google Scholar 

  369. Kukovitsky EF, L’vov SG, Sainov NA (2000) VLS-growth of carbon nanotubes from the vapor. Chem Phys Lett 317:65–70

    Article  Google Scholar 

  370. Kukovitsky EF, L’vov SG, Sainov NA et al (2002) Correlation between metal catalyst particle size and carbon nanotube growth. Chem Phys Lett 355:497–503

    Article  Google Scholar 

  371. Shibuta Y, Suzuki T (2010) Melting and solidification point of fcc-metal nanoparticles with respect to particle size: a molecular dynamics study. Chem Phys Lett 498:323–327

    Article  Google Scholar 

  372. Harutyunyan AR, Tokune T, Mora E (2005) Liquid as a required catalyst phase for carbon single-walled nanotube growth. Appl Phys Lett 87:051919

    Article  Google Scholar 

  373. Hofmann S, Csányi G, Ferrari AC et al (2005) Surface diffusion: the low activation energy path for nanotube growth. Phys Rev Lett 95:036101

    Article  Google Scholar 

  374. Klinke C, Bonard JM, Kern K (2005) Thermodynamic calculations on the catalytic growth of multiwall carbon nanotubes. Phys Rev B 71:035403

    Article  Google Scholar 

  375. Barreiro A, Kramberger C, Rümmeli MH et al (2007) Control of the single-wall carbon nanotube mean diameter in sulphur promoted aerosol-assisted chemical vapour deposition. Carbon 45:55–61

    Article  Google Scholar 

  376. Cheung CL, Kurtz A, Park H, Lieber CM (2002) Diameter-controlled synthesis of carbon nanotubes. J Phys Chem B 106:2429–2433

    Article  Google Scholar 

  377. Schäffel F, Kramberger C, Rümmeli MH et al (2007) Nanoengineered catalyst particles as a key for tailor-made carbon nanotubes. Chem Mater 19:5006–5009

    Article  Google Scholar 

  378. Thurakitseree T, Kramberger C, Zhao P et al (2012) Diameter-controlled and nitrogen-doped vertically aligned single-walled carbon nanotubes. Carbon 50:2635–2640

    Article  Google Scholar 

  379. Marchand M, Journet C, Guillot D et al (2009) Growing a carbon nanotube atom by atom: “and yet it does turn”. Nano Lett 9:2961–2966

    Article  Google Scholar 

  380. Neyts EC, Van Duin ACT, Bogaerts A (2011) Changing chirality during single-walled carbon nanotube growth: a reactive molecular dynamics/monte carlo study. J Am Chem Soc 133:17225–17231

    Article  Google Scholar 

  381. Wang Q, Ng MF, Yang SW et al (2010) The mechanism of single-walled carbon nanotube growth and chirality selection induced by carbon atom and dimer addition. ACS Nano 4:939–946

    Article  Google Scholar 

  382. Hart AJ, Van Laake L, Slocum AH (2007) Desktop growth of carbon-nanotube monoliths with in situ optical imaging. Small 3:772–777

    Article  Google Scholar 

  383. Geohegan DB, Puretzky AA, Ivanov IN et al (2003) In situ growth rate measurements and length control during chemical vapor deposition of vertically aligned multiwall carbon nanotubes. Appl Phys Lett 83:1851–1853

    Article  Google Scholar 

  384. Puretzky AA, Geohegan DB, Jesse S et al (2005) In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition. Appl Phys A 81:223–240

    Article  Google Scholar 

  385. Einarsson E, Murakami Y, Kadowaki M, Maruyama S (2008) Growth dynamics of vertically aligned single-walled carbon nanotubes from in situ measurements. Carbon 46:923–930

    Article  Google Scholar 

  386. Chiashi S, Murakami Y, Miyauchi Y, Maruyama S (2004) Cold wall CVD generation of single-walled carbon nanotubes and in situ Raman scattering measurements of the growth stage. Chem Phys Lett 386:89–94

    Article  Google Scholar 

  387. Picher M, Anglaret E, Arenal R, Jourdain V (2009) Self-deactivation of single-walled carbon nanotube growth studied by in situ Raman measurements. Nano Lett 9:542–547

    Article  Google Scholar 

  388. Rao R, Liptak D, Cherukuri T et al (2012) In situ evidence for chirality-dependent growth rates of individual carbon nanotubes. Nat Mater 11:213–216

    Article  Google Scholar 

  389. Reinhold-López K, Braeuer A, Romann B et al (2014) Simultaneous in situ Raman monitoring of the solid and gas phases during the formation and growth of carbon nanostructures inside a cold wall CCVD reactor. Carbon 78:164–180

    Article  Google Scholar 

  390. Nishimura K, Okazaki N, Pan L, Nakayama Y (2004) In situ study of iron catalysts for carbon nanotube growth using X-ray diffraction analysis. Jpn J Appl Phys 43:L471–L474

    Article  Google Scholar 

  391. Mattevi C, Wirth CT, Hofmann S et al (2008) In-situ X-ray photoelectron spectroscopy study of catalyst-support interactions and growth of carbon nanotube forests. J Phys Chem C 112:12207–12213

    Article  Google Scholar 

  392. Lin M, Ying Tan JP, Boothroyd C et al (2006) Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano Lett 6:449–452

    Article  Google Scholar 

  393. Yoshida H, Takeda S, Uchiyama T et al (2008) Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett 8:2082–2086

    Article  Google Scholar 

  394. Zhang L, Hou PX, Li S et al (2014) In situ TEM observations on the sulfur-assisted catalytic growth of single-wall carbon nanotubes. J Phys Chem Lett 5:1427–1432

    Article  Google Scholar 

  395. Futaba DN, Hata K, Yamada T et al (2005) Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys Rev Lett 95:056104

    Article  Google Scholar 

  396. Helveg S, López-Cartes C, Sehested J et al (2004) Atomic-scale imaging of carbon nanofibre growth. Nature 427:426–429

    Article  Google Scholar 

  397. Stadermann M, Sherlock SP, In J-B et al (2009) Mechanism and kinetics of growth termination in controlled chemical vapor deposition growth of multiwall carbon nanotube arrays. Nano Lett 9:738–744

    Article  Google Scholar 

  398. Yamada T, Maigne A, Yudasaka M et al (2008) Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Lett 8:4288–4292

    Article  Google Scholar 

  399. Nishino H, Yasuda S, Namai T et al (2007) Water-assisted highly efficient synthesis of single-walled carbon nanotubes forests from colloidal nanoparticle catalysts. J Phys Chem C 111:17961–17965

    Article  Google Scholar 

  400. Pint CL, Pheasant ST, Parra-Vasquez ANG et al (2009) Investigation of optimal parameters for oxide-assisted growth of vertically aligned single-walled carbon nanotubes. J Phys Chem C 113:4125–4133

    Article  Google Scholar 

  401. Reilly PTA, Whitten WB (2006) The role of free radical condensates in the production of carbon nanotubes during the hydrocarbon CVD process. Carbon 44:1653–1660

    Article  Google Scholar 

  402. Schünemann C, Schäffel F, Bachmatiuk A et al (2011) Catalyst poisoning by amorphous carbon during carbon nanotube growth: fact or fiction? ACS Nano 5:8928–8934

    Article  Google Scholar 

  403. Xiang R, Yang Z, Zhang Q et al (2008) Growth deceleration of vertically aligned carbon nanotube arrays: catalyst deactivation or feedstock diffusion controlled? J Phys Chem C 112:4892–4896

    Article  Google Scholar 

  404. Bedewy M, Meshot ER, Guo H et al (2009) Collective mechanism for the evolution and self-termination of vertically aligned carbon nanotube growth. J Phys Chem C 113:20576–20582

    Article  Google Scholar 

  405. Bower C, Zhou O, Zhu W et al (2000) Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl Phys Lett 77:2767–2769

    Article  Google Scholar 

  406. Li J, Papadopoulos C, Xu JM, Moskovits M (1999) Highly-ordered carbon nanotube arrays for electronics applications. Appl Phys Lett 75:367–369

    Article  Google Scholar 

  407. Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758

    Article  Google Scholar 

  408. Rodriguez NM (1993) A review of catalytically grown carbon nanofibers. J Mater Res 8:3233–3250

    Article  Google Scholar 

  409. Tibbetts GG (1984) Why are carbon filaments tubular? J Cryst Growth 66:632–638

    Article  Google Scholar 

  410. Ding F, Bolton K, Rosén A (2006) Molecular dynamics study of SWNT growth on catalyst particles without temperature gradients. Comput Mater Sci 35:243–246

    Article  Google Scholar 

  411. Bolton K, Ding F, Rosén A (2006) Atomistic simulations of catalyzed carbon nanotube growth. J Nanosci Nanotechnol 6:1211–1224

    Article  Google Scholar 

  412. Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE (2000) Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts. Chem Phys Lett 317:497–503

    Article  Google Scholar 

  413. Li Y, Liu J, Wang Y, Wang ZL (2001) Preparation of monodispersed Fe–Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem Mater 13:1008–1014

    Article  Google Scholar 

  414. Thurakitseree T, Einarsson E, Xiang R et al (2012) Diameter controlled chemical vapor deposition synthesis of single-walled carbon nanotubes. J Nanosci Nanotechnol 12:370–376

    Article  Google Scholar 

  415. Ayala P, Grüneis A, Gemming T et al (2007) Tailoring N-doped single and double wall carbon nanotubes from a nondiluted carbon/nitrogen feedstock. J Phys Chem C 111:2879–2884

    Article  Google Scholar 

  416. Cassell MA, Raymakers AJ, Kong J et al (1999) Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B 103:6484–6492

    Article  Google Scholar 

  417. Liu B, Ren W, Li S et al (2012) High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst. Chem Commun 48:2409

    Article  Google Scholar 

  418. Yang F, Wang X, Zhang D et al (2014) Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510:522–524

    Article  Google Scholar 

  419. Wang H, Wei L, Ren F et al (2013) Chiral-selective CoSo4/SiO2 catalyst for (9,8) single-walled carbon nanotube growth. ACS Nano 7:614–626

    Article  Google Scholar 

  420. Wang H, Wang B, Quek XY et al (2010) Selective synthesis of (9,8) single walled carbon nanotubes on cobalt incorporated TUD-1 catalysts. J Am Chem Soc 132:16747–16749

    Article  Google Scholar 

  421. He M, Jiang H, Liu B et al (2013) Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles. Sci Rep 3:1460

    Google Scholar 

  422. Ding F, Harutyunyan AR, Yakobson BI (2009) Dislocation theory of chirality-controlled nanotube growth. Proc Natl Acad Sci USA 106:2506–2509

    Article  Google Scholar 

  423. Ibrahim I, Zhang Y, Popov A et al (2013) Growth of all-carbon horizontally aligned single-walled carbon nanotubes nucleated from fullerene-based structures. Nanoscale Res Lett 8:265

    Article  Google Scholar 

  424. Yu X, Zhang J, Choi W et al (2010) Cap formation engineering: from opened C60 to single-walled carbon nanotubes. Nano Lett 10:3343–3349

    Article  Google Scholar 

  425. Liu Y, Xu M, Zhu X et al (2014) Synthesis of carbon nanotubes on graphene quantum dot surface by catalyst free chemical vapor deposition. Carbon 68:399–405

    Article  Google Scholar 

  426. Takagi D, Hibino H, Suzuki S et al (2007) Carbon nanotube growth from semiconductor nanoparticles. Nano Lett 7:2272–2275

    Article  Google Scholar 

  427. Scott A, Dianat A, Börrnert F et al (2011) The catalytic potential of high-κ dielectrics for graphene formation. Appl Phys Lett 98:073110

    Article  Google Scholar 

  428. Huang S, Cai Q, Chen J et al (2009) Metal-catalyst-free growth of single-walled carbon nanotubes on substrates. J Am Chem Soc 131:2094–2095

    Article  Google Scholar 

  429. Liu B, Tang DM, Sun C et al (2011) Importance of oxygen in the metal-free catalytic growth of single-walled carbon nanotubes from SiOx by a vapor-solid-solid mechanism. J Am Chem Soc 133:197–199

    Article  Google Scholar 

  430. Kang L, Hu Y, Liu L et al (2015) Growth of close-packed semiconducting single-walled carbon nanotube arrays using oxygen-deficient TiO2 nanoparticles as catalysts. Nano Lett 15:403–409

    Article  Google Scholar 

  431. Steiner SA, Baumann TF, Bayer BC et al (2009) Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes. J Am Chem Soc 131:12144–12154

    Article  Google Scholar 

  432. Kudo A, Steiner SA, Bayer BC et al (2014) CVD growth of carbon nanostructures from zirconia: mechanisms and a method for enhancing yield. J Am Chem Soc 136:17808–17817

    Article  Google Scholar 

  433. Ning G, Xu C, Zhu X et al (2013) MgO-catalyzed growth of N-doped wrinkled carbon nanotubes. Carbon 56:38–44

    Article  Google Scholar 

  434. Gao F, Zhang L, Huang S (2010) Zinc oxide catalyzed growth of single-walled carbon nanotubes. Appl Surf Sci 256:2323–2326

    Article  Google Scholar 

  435. Lin J-H, Chen C-S, Rümmeli MH, Zeng Z-Y (2010) Self-assembly formation of multi-walled carbon nanotubes on gold surfaces. Nanoscale 2:2835–2840

    Article  Google Scholar 

  436. Liu BL, Ren WC, Gao LB et al (2008) Manganese-catalyzed surface growth of single-walled carbon nanotubes with high efficiency. J Phys Chem C 112:19231–19235

    Article  Google Scholar 

  437. Yuan D, Ding L, Chu H et al (2008) Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett 8:2576–2579

    Article  Google Scholar 

  438. Takagi D, Homma Y, Hibino H et al (2006) Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett 6:2642–2645

    Article  Google Scholar 

  439. Zhou W, Han Z, Wang J et al (2006) Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett 6:2987–2990

    Article  Google Scholar 

  440. Mizutani Y, Fukuoka N, Naritsuka S et al (2012) Single-walled carbon nanotube synthesis on SiO2/Si substrates at very low pressures by the alcohol gas source method using a Pt catalyst. Diam Relat Mater 26:78–82

    Article  Google Scholar 

  441. Ritschel M, Leonhardt A, Elefant D et al (2007) Rhenium-catalyzed growth carbon nanotubes. J Phys Chem C 111:8414–8417

    Article  Google Scholar 

  442. Xu X, Yang C, Yang Z et al (2014) Carbon nanotube growth from alkali metal salt nanoparticles. Carbon 80:490–495

    Article  Google Scholar 

Download references

Acknowledgements

J.P. thanks the China Scholarship Council (CSC) and the DFG (DFG RU1540/15-2). A.B. thanks the National Science Centre for the financial support within the frames of the Sonata Programme (Grant agreement 2014/13/D/ST5/02853). D.P. and G.S.M. thank the IT4 Innovations project reg. no. CZ.1.05./1.1.00/02.0070. The research was supported by the Sino-German Center for Research Promotion (Grant GZ 871). J.E. thanks the German Excellence Initiative via the Cluster of Excellence EXC1056 “Center for Advancing Electronics Dresden” (CfAED).

Authors’ contributions

The manuscript was written through contributions of all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark H. Rümmeli.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, J., Bachmatiuk, A., Ibrahim, I. et al. CVD growth of 1D and 2D sp2 carbon nanomaterials. J Mater Sci 51, 640–667 (2016). https://doi.org/10.1007/s10853-015-9440-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9440-z

Keywords

Navigation