Skip to main content
Log in

Self-templated formation of tremella-like MoS2 with expanded spacing of (002) crystal planes for Li-ion batteries

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tremella-like MoS2 consisting of ultrathin nanosheets (~7 nm in thickness) is prepared via a one-pot hydrothermal reaction without using any surfactants and templates. The reaction involves transforming precursor MoO3 to polyhedral intermediate (K2NaMoO3F3 and K3Mo2O4F5) through its reaction with Na+, K+, and F ions in the initial stage of hydrothermal reaction. Then the polyhedral intermediate acting as the sacrifice template reacts with the S2− released from a hydrolysis process of SCN ion and transforms to tremella-like MoS2. The obtained MoS2 product exhibits expended spacing of the (002) crystal plane, which can facilitate faster lithium ions intercalation behavior. This tremella-like MoS2 used as an anode material for lithium-ion batteries shows a very high reversible capacity of 693 mA h g−1 after 50 cycles, good rate capability, and high cyclic capacity retention. Even cycled at a high current density of 4800 mA g−1, the tremella-like MoS2 still can deliver a high capacity of 252 mA h g−1. The secondary hierarchical microstructures consisting of ultrathin nanosheets are beneficial to greatly improved electrochemical performance of the MoS2 electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dong L, Namburu R, O’Regan T et al (2014) Theoretical study on strain-induced variations in electronic properties of monolayer MoS2. J Mater Sci 49:6762–6771. doi:10.1007/s10853-014-8370-5

    Article  Google Scholar 

  2. Xie D, Su Q, Zhang J et al (2014) Graphite oxide-assisted sonochemical preparation of α-Bi2O3 nanosheets and their high-efficiency visible light photocatalytic activity. J Mater Sci 49:218–224. doi:10.1007/s10853-013-7695-9

    Article  Google Scholar 

  3. Jia X, Chen Z, Suwarnasarn A et al (2012) High-performance flexible lithium-ion electrodes based on robust network architecture. Energy Environ Sci 5:6845–6849

    Article  Google Scholar 

  4. Guan Q, Cheng J, Wang B et al (2014) Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors. ACS Appl Mater Interfaces 6:7626–7632

    Article  Google Scholar 

  5. Krishnan D, Kim F, Luo J et al (2012) Energetic graphene oxide: challenges and opportunities. Nano Today 7:137–152

    Article  Google Scholar 

  6. Zhu Y, Murali S, Cai W et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  Google Scholar 

  7. Chen X, Qiu L, Ren J et al (2013) Novel electric double-layer capacitor with a coaxial fiber structure. Adv Mater 25:6436–6441

    Article  Google Scholar 

  8. Li X, Zhou M, Xu H et al (2014) Synthesis and electrochemical performances of a novel two-dimensional nanocomposite: polyaniline-coated laponite nanosheets. J Mater Sci 49:6830–6837. doi:10.1007/s10853-014-8385-y

    Article  Google Scholar 

  9. Lee S-H, Sridhar V, Jung J-H et al (2013) Graphene–nanotube–iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 7:4242–4251

    Article  Google Scholar 

  10. Yue W, Lin Z, Jiang S et al (2012) Preparation of graphene-encapsulated mesoporous metal oxides and their application as anode materials for lithium-ion batteries. J Mater Chem 22:16318–16323

    Article  Google Scholar 

  11. Wu HB, Lou XWD, Hng HH (2012) Titania nanosheets hierarchically assembled on carbon nanotubes as high-rate anodes for lithium-ion batteries. Chem-eur J 18:3132–3135

    Article  Google Scholar 

  12. Tao L, Zai J, Wang K et al (2012) Co3O4 nanorods/graphene nanosheets nanocomposites for lithium ion batteries with improved reversible capacity and cycle stability. J Power Sources 202:230–235

    Article  Google Scholar 

  13. Lu LQ, Wang Y (2012) Facile synthesis of graphene-supported shuttle-and urchin-like CuO for high and fast li-ion storage. Electrochem Commun 14:82–85

    Article  Google Scholar 

  14. Cheng J, Xin H, Zheng H et al (2013) One-pot synthesis of carbon coated-SnO2/graphene-sheet nanocomposite with highly reversible lithium storage capability. J Power Sources 232:152–158

    Article  Google Scholar 

  15. Ye L, Wu C, Guo W et al (2006) MoS2 hierarchical hollow cubic cages assembled by bilayers: one-step synthesis and their electrochemical hydrogen storage properties. Chem Commun 45:4738–4740

    Article  Google Scholar 

  16. Liang Y, Yoo HD, Li Y et al (2015) Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett 15:2194–2202

    Article  Google Scholar 

  17. Zhang K, Zhao Y, Zhang S et al (2014) MoS2 nanosheet/Mo2C-embedded n-doped carbon nanotubes: synthesis and electrocatalytic hydrogen evolution performance. J Mater Chem A 2:18715–18719

    Article  Google Scholar 

  18. Yu H, Yu X, Chen Y et al (2015) A strategy to synergistically increase the number of active edge sites and the conductivity of MoS2 nanosheets for hydrogen evolution. Nanoscale 7:8731–8738

    Article  Google Scholar 

  19. Acerce M, Voiry D, Chhowalla M (2015) Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 10:313–318

    Article  Google Scholar 

  20. Wang X, Nan F, Zhao J et al (2015) A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity. Biosens Bioelectron 64:386–391

    Article  Google Scholar 

  21. Li Y, Wang H, Xie L et al (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299

    Article  Google Scholar 

  22. Zhang X, Luster B, Church A et al (2009) Carbon nanotube-MoS2 composites as solid lubricants. ACS Appl Mater Interfaces 1:735–739

    Article  Google Scholar 

  23. Zhang S, Yu X, Yu H et al (2014) Growth of ultrathin MoS2 nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes. ACS Appl Mater Interfaces 6:21880–21885

    Article  Google Scholar 

  24. Hu Z, Wang L, Zhang K et al (2014) MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem 126:13008–13012

    Article  Google Scholar 

  25. Yang L, Liu L, Zhu Y et al (2012) Preparation of carbon coated MoO2 nanobelts and their high performance as anode materials for lithium ion batteries. J Mater Chem 22:13148–13152

    Article  Google Scholar 

  26. Liu H, Su D, Zhou R et al (2012) Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv Energy Mater 2:970–975

    Article  Google Scholar 

  27. Ding S, Chen JS, Lou XWD (2011) Glucose-assisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties. Chem-eur J 17:13142–13145

    Article  Google Scholar 

  28. Yu Y, Gu L, Lang X et al (2011) Li storage in 3D nanoporous Au-supported nanocrystalline tin. Adv Mater 23:2443–2447

    Article  Google Scholar 

  29. Murugan AV, Quintin M, Delville M-H et al (2006) Exfoliation-induced nanoribbon formation of poly(3, 4-ethylene dioxythiophene) pedot between MoS2 layers as cathode material for lithium batteries. J Power Sources 156:615–619

    Article  Google Scholar 

  30. Liang Y, Feng R, Yang S et al (2011) Rechargeable mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Adv Mater 23:640–643

    Article  Google Scholar 

  31. Xiao J, Choi D, Cosimbescu L et al (2010) Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem Mater 22:4522–4524

    Article  Google Scholar 

  32. Yu H, Zhu C, Zhang K et al (2014) Three-dimensional hierarchical MoS2 nanoflake array/carbon cloth as high-performance flexible lithium-ion battery anodes. J Mater Chem A 2:4551–4557

    Article  Google Scholar 

  33. Yu H, Ma C, Ge B et al (2013) Three-dimensional hierarchical architectures constructed by graphene/MoS2 nanoflake arrays and their rapid charging/discharging properties as lithium-ion battery anodes. Chem-eur J 19:5818–5823

    Article  Google Scholar 

  34. Wang B, Cheng J, Wu Y et al (2012) Porous nio fibers prepared by electrospinning as high performance anode materials for lithium ion batteries. Electrochem Commun 23:5–8

    Article  Google Scholar 

  35. Wang B, Cheng J, Wu Y et al (2013) Electrochemical performance of carbon/Ni composite fibers from electrospinning as anode material for lithium ion batteries. J Mater Chem A 1:1368–1373

    Article  Google Scholar 

  36. Cheng J, Wang B, Xin HL et al (2013) Self-assembled V2O5 nanosheets/reduced graphene oxide hierarchical nanocomposite as a high-performance cathode material for lithium ion batteries. J Mater Chem A 1:10814–10820

    Article  Google Scholar 

  37. Wang B, Xin H, Li X et al (2014) Mesoporous CNT@TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes. Sci Rep 4:3729

    Google Scholar 

  38. Hwang H, Kim H, Cho J (2011) MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett 11:4826–4830

    Article  Google Scholar 

  39. Du G, Guo Z, Wang S et al (2010) Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem Commun 46:1106–1108

    Article  Google Scholar 

  40. Stephenson T, Li Z, Olsen B et al (2014) Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ Sci 7:209–231

    Article  Google Scholar 

  41. Chen Y, Song B, Tang X et al (2014) Ultrasmall Fe3O4 nanoparticle/MoS2 nanosheet composites with superior performances for lithium ion batteries. Small 10:1536–1543

    Article  Google Scholar 

  42. Zeng Z, Sun T, Zhu J et al (2012) An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew Chem Int Ed 51:9052–9056

    Article  Google Scholar 

  43. Zeng Z, Yin Z, Huang X et al (2011) Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew Chem Int Ed 50:11093–11097

    Article  Google Scholar 

  44. Chang K, Chen W (2011) In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem Commun 47:4252–4254

    Article  Google Scholar 

  45. Qian X, Lv Y, Li W et al (2011) Multiwall carbon nanotube@ mesoporous carbon with core-shell configuration: a well-designed composite-structure toward electrochemical capacitor application. J Mater Chem 21:13025–13031

    Article  Google Scholar 

  46. Xiao J, Wang X, Yang XQ et al (2011) Electrochemically induced high capacity displacement reaction of PEO/MoS2/graphene nanocomposites with lithium. Adv Funct Mater 21:2840–2846

    Article  Google Scholar 

  47. Wang J, Yang N, Tang H et al (2013) Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew Chem 125:6545–6548

    Article  Google Scholar 

  48. Li H, Li W, Ma L et al (2009) Electrochemical lithiation/delithiation performances of 3D flowerlike MoS2 powders prepared by ionic liquid assisted hydrothermal route. J Alloy Compd 471:442–447

    Article  Google Scholar 

  49. Kwon J-H, Ahn H-J, Jeon M-S et al (2010) The electrochemical properties of Li/TEGDME/MoS2 cells using multi-wall carbon nanotubes as a conducting agent. Res Chem Intermediat 36:749–759

    Article  Google Scholar 

  50. Feng C, Ma J, Li H et al (2009) Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater Res Bull 44:1811–1815

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Applied Fundamental Foundation of Sichuan Province (2014JY0202), the R&D Foundation of China Academy of Engineering Physics (2014B 0302036) and National Natural Science Foundation of China (Nos. 21401177 and 21501160), the “1000plan” from the Chinese Government, and the Collaborative Innovation Foundation of SiChuan University (XTCS2014009). The authors thank Mr. Xiangyun Song and Dr. Huolin Xin for the TEM characterization and analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Wang or Shiyong Ye.

Additional information

Guoxin Qu and Jianli Cheng have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5232 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, G., Cheng, J., Wang, Z. et al. Self-templated formation of tremella-like MoS2 with expanded spacing of (002) crystal planes for Li-ion batteries. J Mater Sci 51, 4739–4747 (2016). https://doi.org/10.1007/s10853-015-9421-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9421-2

Keywords

Navigation