Skip to main content

Advertisement

Log in

Microhardness, microstructure and tensile behavior of an AZ31 magnesium alloy processed by high-pressure torsion

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An AZ31 magnesium alloy was processed by high-pressure torsion (HPT) at room temperature under an imposed pressure of 6.0 GPa. Microstructural analysis showed that the HPT processing introduced significant grain refinement with a reduction in grain size from ~35 μm in the initial annealed condition to ~110 nm after ten turns of HPT. Microhardness measurements showed that a reasonable level of hardness homogeneity was achieved across the disk processed through ten turns. The results from tensile testing demonstrated that the ultrafine-grained (UFG) AZ31 alloy processed by HPT exhibits high ductility with a maximum elongation of ~400 % at the relatively low testing temperature of 423 K. The results confirm that the UFG AZ31 magnesium alloy processed by HPT through ten turns has a strong potential for use in micro-forming applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mordike BL, Ebert T (2001) Magnesium: properties—applications—potential. Mater Sci Eng A302:37–45

    Article  Google Scholar 

  2. Witte F (2010) The history of biodegradable magnesium implants: a review. Acta Biomater 6:1680–1692

    Article  Google Scholar 

  3. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189

    Article  Google Scholar 

  4. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58(4):33–39

    Article  Google Scholar 

  5. Langdon TG (2013) Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Mater 61:7035–7059

    Article  Google Scholar 

  6. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981

    Article  Google Scholar 

  7. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979

    Article  Google Scholar 

  8. Agnew SR, Horton JA, Lillo TM, Brown DW (2004) Enhanced ductility in strongly textured magnesium produced by equal channel angular processing. Scripta Mater 50:377–381

    Article  Google Scholar 

  9. Kim HK, Kim WJ (2004) Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation. Mater Sci Eng A385:300–308

    Article  Google Scholar 

  10. Zúberová Z, Estrin Y, Lamark TT, Janeček M, Hellmig RJ, Krieger M (2007) Effect of equal channel angular pressing on the deformation behaviour of magnesium alloy AZ31 under uniaxial compression. J Mater Process Technol 184:294–299

    Article  Google Scholar 

  11. Janeček M, Popov M, Krieger MG, Hellmig RJ, Estrin Y (2007) Mechanical properties and microstructure of a Mg alloy AZ31 prepared by equal-channel angular pressing. Mater Sci Eng A462:116–120

    Article  Google Scholar 

  12. Kang SH, Lee YS, Lee JH (2008) Effect of grain refinement of magnesium alloy AZ31 by severe plastic deformation on material characteristics. J Mater Process Technol 201:436–440

    Article  Google Scholar 

  13. Figueiredo RB, Langdon TG (2008) Developing superplasticity in a magnesium AZ31 alloy by ECAP. J Mater Sci 43:7366–7371. doi:10.1007/s10853-008-2846-0

    Article  Google Scholar 

  14. Figueiredo RB, Langdon TG (2009) Principles of grain refinement and superplastic flow in magnesium alloys processed by ECAP. Mater Sci Eng A501:105–114

    Article  Google Scholar 

  15. Figueiredo RB, Terzi S, Langdon TG (2010) Using X-ray microtomography to evaluate cavity formation in a superplastic magnesium alloy processed by equal-channel angular pressing. Acta Mater 58:5737–5748

    Article  Google Scholar 

  16. Figueiredo RB, Langdon TG (2010) Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP. J Mater Sci 45:4827–4836. doi:10.1007/s10853-010-4589-y

    Article  Google Scholar 

  17. Figueiredo RB, Langdon TG (2012) Influence of rolling direction on flow and cavitation in a superplastic magnesium alloy processed by equal-channel angular. Mater Sci Eng A556:211–220

    Article  Google Scholar 

  18. Zhilyaev AP, Nurislamova GV, Kim BK, Barό MD, Szpunar JA, Langdon TG (2002) Orientation imaging microscopy of ultrafine-grained nickel. Scripta Mater 46:575–580

    Article  Google Scholar 

  19. Zhilyaev AP, Kim BK, Nurislamova GV, Barό MD, Szpunar JA, Langdon TG (2003) Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater 51:753–765

    Article  Google Scholar 

  20. Wongsa-Ngam J, Kawasaki M, Langdon TG (2013) A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques. J Mater Sci 48:4653–4660. doi:10.1007/s10853-012-7072-0

    Article  Google Scholar 

  21. Kai M, Horita Z, Langdon TG (2008) Developing grain refinement and superplasticity in a magnesium alloy processed by high-pressure torsion. Mater Sci Eng A488:117–124

    Article  Google Scholar 

  22. Harai Y, Kai M, Kaneko K, Horita Z, Langdon TG (2008) Microstructural and mechanical characteristics of AZ61 magnesium alloy processed by high-pressure torsion. Mater Trans 49:76–83

    Article  Google Scholar 

  23. Serre P, Figueiredo RB, Gao N, Langdon TG (2011) Influence of strain rate on the characteristics of a magnesium alloy processed by high-pressure torsion. Mater Sci Eng A528:3601–3608

    Article  Google Scholar 

  24. Figueiredo RB, Langdon TG (2011) Development of structural heterogeneities in a magnesium alloy processed by high-pressure torsion. Mater Sci Eng A528:4500–4506

    Article  Google Scholar 

  25. Jenei P, Gubicza J, Yoon EY, Kim HS (2012) X-ray diffraction study on the microstructure of an Mg–Zn–Y alloy consolidated by high-pressure torsion. J Alloys Compd 539:32–35

    Article  Google Scholar 

  26. Huang Y, Figueiredo RB, Baudin T, Helbert AL, Brisset F, Langdon TG (2012) Effect of temperature on the processing of a magnesium alloy by high-pressure torsion. J Mater Sci 47:7796–7806. doi:10.1007/s10853-012-6578-9

    Article  Google Scholar 

  27. Huang Y, Figueiredo RB, Baudin T, Brisset F, Langdon TG (2012) Evolution of strength and homogeneity in a magnesium AZ31 alloy processed by high-pressure torsion at different temperatures. Adv Eng Mater 14:1018–1026

    Article  Google Scholar 

  28. Torbati-Sarraf SA, Langdon TG (2014) Properties of a ZK60 magnesium alloy processed by high-pressure torsion. J Alloys Compd 613:357–363

    Article  Google Scholar 

  29. Lee HJ, Lee SK, Jung KH, Lee GA, Ahn B, Kawasaki M, Langdon TG (2015) Evolution in hardness and texture of a ZK60A magnesium alloy processed by high-pressure torsion. Mater Sci Eng A630:90–98

    Article  Google Scholar 

  30. Stráská J, Janeček M, Gubicza J, Krajňák T, Yoon EY, Kim HS (2015) Evolution of microstructure and hardness in AZ31 alloy processed by high pressure torsion. Mater Sci Eng A625:98–106

    Article  Google Scholar 

  31. Lee HJ, Ahn B, Kawasaki M, Langdon TG (2015) Evolution in hardness and microstructure of ZK60A magnesium alloy processed by high-pressure torsion. J Mater Res Technol 4:18–25

    Article  Google Scholar 

  32. Kim WJ, Sa YK (2006) Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears. Scripta Mater 54:1391–1395

    Article  Google Scholar 

  33. Kang SG, Na YS, Park KY, Jeon JE, Son SC, Lee JH (2007) A study on the micro-formability of Al 5083 superplastic alloy using micro-forging method. Mater Sci Eng A 449–451:338–342

    Article  Google Scholar 

  34. Geißdörfer S, Rosochowski A, Olejnik L, Engel U, Richert M (2008) Micro-extrusion of ultrafine grained copper. Int J Mater Form 1:455–458

    Article  Google Scholar 

  35. Qiao XG, Gao N, Moktadir Z, Kraft M, Starink MJ (2010) Fabrication of MEMS components using ultrafine-grained aluminium alloys. J Micromech Microeng 20:045029

    Article  Google Scholar 

  36. Rosochowski A, Presz W, Olejnik L, Richert M (2007) Micro-extrusion of ultra-fine grained aluminium. Int J Adv Manuf Technol 33:137–146

    Article  Google Scholar 

  37. Durst K, Hofmann S, Backes B, Mueller J, Göken M (2010) Microimprinting of nanocrystalline metals-Influence of microstructure and work hardening. J Mater Process Technol 210:1787–1793

    Article  Google Scholar 

  38. Kim WJ, Yoo SJ, Kim HK (2008) Superplastic microforming of Mg–9Al–1Zn alloy with ultrafine-grained microstructure. Scripta Mater 59:599–602

    Article  Google Scholar 

  39. Xu J, Guo B, Shan D, Langdon TG (2014) Micro-tensile behavior at a high temperature in an AZ31 magnesium alloy processed by ECAP. Mater Sci Forum 783–786:2726–2731

    Article  Google Scholar 

  40. Warthi N, Ghosh P, Chokshi AH (2013) Approaching theoretical strengths by synergistic internal and external size refinement. Scripta Mater 68:225–228

    Article  Google Scholar 

  41. Figueiredo RB, Cetlin PR, Langdon TG (2011) Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion. Mater Sci Eng A528:8198–8204

    Article  Google Scholar 

  42. Figueiredo RB, Pereira PHR, Aguilar MTP, Cetlin PR, Langdon TG (2012) Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Mater 60:3190–3198

    Article  Google Scholar 

  43. Figueiredo RB, Aguilar MTP, Cetlin PR, Langdon TG (2012) Analysis of plastic flow during high-pressure torsion. J Mater Sci 47:7807–7814. doi: 10.1007/s10853-012-6506-z

    Article  Google Scholar 

  44. Pereira PHR, Figueiredo RB, Cetlin PR, Langdon TG (2015) An examination of the elastic distortions of anvils in high-pressure torsion. Mater Sci Eng A631:201–208

    Article  Google Scholar 

  45. Kawasaki M, Langdon TG (2008) The significance of strain reversals during processing by high-pressure torsion. Mater Sci Eng A498:341–348

    Article  Google Scholar 

  46. Loucif A, Figueiredo RB, Kawasaki M, Baudin T, Brisset F, Chemam R, Langdon TG (2012) Effect of aging on microstructural development in an Al–Mg–Si alloy processed by high-pressure torsion. J Mater Sci 47:7815–7820. doi:10.1007/s10853-012-6400-8

    Article  Google Scholar 

  47. Xu C, Horita Z, Langdon TG (2007) The evolution in homogeneity in processing by high-pressure torsion. Acta Mater 55:203–212

    Article  Google Scholar 

  48. Xu C, Horita Z, Langdon TG (2008) The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion. Acta Mater 56:5168–5176

    Article  Google Scholar 

  49. Al-Zubaydi A, Figueiredo RB, Huang Y, Langdon TG (2013) Structural and hardness inhomogeneities in Mg-Al-Zn alloys processed by high-pressure torsion. J Mater Sci 48:4661–4670. doi:10.1007/s10853-013-7176-1

    Article  Google Scholar 

  50. Vrátná J, Janeček M, Čížek J, Lee DJ, Yoon EY, Kim HS (2013) Mechanical properties and microstructure evolution in ultrafine grained AZ31 alloy processed by severe plastic deformation. J Mater Sci 48:4705–4712. doi:10.1007/s10853-013-7151-x

    Article  Google Scholar 

  51. Langdon TG (1994) A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall Mater 42:2437–2443

    Article  Google Scholar 

  52. Langdon TG (2009) Seventy-five years of superplasticity: historic developments and new opportunities. J Mater Sci 44:5998–6010. doi:10.1007/s10853-009-3780-5

    Article  Google Scholar 

  53. Stráská J, Janeček M, Čížek J, Stráský J, Hadzima B (2014) Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EX-ECAP). Mater Charact 94:69–79

    Article  Google Scholar 

  54. Gzyl M, Rosochowski A, Boczkal S, Olejnik L (2015) The role of microstructure and texture in controlling mechanical properties of AZ31B magnesium alloy processed by I-ECAP. Mater Sci Eng A638:20–29

    Article  Google Scholar 

  55. Young JP, Askari H, Hovanski Y, Heiden MJ, Field DP (2015) Thermal microstructural stability of AZ31 magnesium after severe plastic deformation. Mater Charact 101:9–19

    Article  Google Scholar 

  56. Yamashita A, Horita Z, Langdon TG (2001) Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater Sci Eng A300:142–147

    Article  Google Scholar 

  57. Cetlin PR, Aguilar MTP, Figueiredo RB, Langdon TG (2010) Avoiding cracks and inhomogeneities in billets processed by ECAP. J Mater Sci 45:4561–4570. doi:10.1007/s10853-010-4384-9

    Article  Google Scholar 

  58. Figueiredo RB, Cetlin PR, Langdon TG (2010) Stable and unstable flow in materials processed by equal-channel angular pressing with an emphasis on magnesium alloys. Metall Mater Trans A41A:778–786

    Article  Google Scholar 

  59. Horita Z, Matsubara K, Makii K, Langdon TG (2002) A two-step processing route for achieving a superplastic forming capability in dilute magnesium alloys. Scripta Mater 47:255–260

    Article  Google Scholar 

  60. Figueiredo RB, Langdon TG (2009) Principles of grain refinement in magnesium alloys processed by equal-channel angular pressing. J Mater Sci 44:4758–4762. doi:10.1007/s10853-009-3725-z

    Article  Google Scholar 

  61. Xia K, Wang JT, Wu X, Chen G, Gurvan M (2005) Equal channel angular pressing of magnesium alloy AZ31. Mater Sci Eng A410–411:324–327

    Article  Google Scholar 

  62. Xu C, Xia K, Langdon TG (2009) Processing of a magnesium alloy by equal-channel angular pressing using a back-pressure. Mater Sci Eng A527:205–211

    Article  Google Scholar 

  63. Furui M, Kitamura H, Anada H, Langdon TG (2007) Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAP. Acta Mater 55:1083–1091

    Article  Google Scholar 

  64. Figueiredo RB, Cetlin PR, Langdon TG (2007) The processing of difficult-to-work alloys by ECAP with an emphasis on magnesium alloys. Acta Mater 55:4769–4779

    Article  Google Scholar 

  65. Xu J, Shirooyeh M, Wongsa-Ngam J, Shan D, Guo B, Langdon TG (2013) Hardness homogeneity and micro-tensile behavior in a magnesium AZ31 alloy processed by equal-channel angular pressing. Mater Sci Eng A586:108–114

    Article  Google Scholar 

  66. Kawasaki M (2014) Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion. J Mater Sci 49:18–34. doi: 10.1007/s10853-013-7687-9

    Article  Google Scholar 

  67. Valiev RZ, Ivanisenko YV, Rauch EF, Baudelet B (1996) Structure and deformation behaviour of Armco iron subjected to severe plastic deformation. Acta Mater 44:4705–4712

    Article  Google Scholar 

  68. Wetscher F, Vorhauer A, Stock R, Pippan R (2004) Structural refinement of low alloyed steels during severe plastic deformation. Mater Sci Eng A387–389:809–816

    Article  Google Scholar 

  69. Wetscher F, Pippan R, Sturm S, Kauffmann F, Scheu C, Dehm G (2006) TEM investigations of the structural evolution in a pearlitic steel deformed by high-pressure torsion. Metall Mater Trans A 37A:1963–1968

    Article  Google Scholar 

  70. Vorhauer A, Pippan R (2004) On the homogeneity of deformation by high pressure torsion. Scripta Mater 51:921–925

    Article  Google Scholar 

  71. Edalati K, Ito Y, Suehiro K, Horita Z (2009) Softening of high purity aluminum and copper processed by high pressure torsion. Int J Mater Res 100:1668–1673

    Article  Google Scholar 

  72. Loucif A, Figueiredo RB, Baudin T, Brisset F, Langdon TG (2010) Microstructural evolution in an Al-6061 alloy processed by high-pressure torsion. Mater Sci Eng A527:4864–4869

    Article  Google Scholar 

  73. Tian YZ, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2011) Microstructural evolution and mechanical properties of a two-phase Cu–Ag alloy processed by high-pressure torsion to ultrahigh strains. Acta Mater 59:2783–2796

    Article  Google Scholar 

  74. Sabbaghianrad S, Langdon TG (2014) A critical evaluation of the processing of an aluminum 7075 alloy using a combination of ECAP and HPT. Mater Sci Eng A596:52–58

    Article  Google Scholar 

  75. Edalati K, Yamamoto A, Horita Z, Ishihara T (2011) High-pressure torsion of pure magnesium: evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain. Scripta Mater 64:880–883

    Article  Google Scholar 

  76. Edalati K, Horita Z (2011) Significance of homologous temperature in softening behavior and grain size of pure metals processed by high-pressure torsion. Mater Sci Eng A528(7514–7523):7514

    Article  Google Scholar 

  77. Almazrouee AI, Al-Fadhalah KJ, Alhajeri SN, Langdon TG (2015) Microstructure and microhardness of OFHC copper processed by high-pressure torsion. Mater Sci Eng A641:21–28

    Article  Google Scholar 

  78. Vollertsen F, Biermann D, Hansen HN, Jawahir IS, Kuzman K (2009) Size effects in manufacturing of metallic components. CIRP Ann Manuf Technol 58:566–587

    Article  Google Scholar 

  79. Fu MW, Chan WL (2013) A review on the state-of-the-art microforming technologies. Int J Adv Manuf Technol 67:2411–2437

    Article  Google Scholar 

  80. Xu J, Zhu X, Shi L, Shan D, Guo B, Langdon TG (2015) Micro-forming using ultrafine-grained aluminum processed by equal-channel angular pressing. Adv Eng Mater 17:1022–1033

    Article  Google Scholar 

  81. Xu J, Wang C, Shan D, Guo B, Langdon TG (2015) Micro-deformation behavior in micro-compression with high-purity aluminum processed by ECAP. Manuf Rev 2:1–7

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 51105102 and 51375111, the National Science Foundation of the United States under Grant No. DMR-1160966, and the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS. Partial support was also provided by the National Basic Research Program of China under Grant No. 2012CB934100.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Xu or Terence G. Langdon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Wang, X., Shirooyeh, M. et al. Microhardness, microstructure and tensile behavior of an AZ31 magnesium alloy processed by high-pressure torsion. J Mater Sci 50, 7424–7436 (2015). https://doi.org/10.1007/s10853-015-9300-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9300-x

Keywords

Navigation