Skip to main content
Log in

Processing of rf-sputtered lead zirconate titanate thin films on copper foil substrates

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Pb(Zr0.52Ti0.48)O3 (PZT) thin films on copper foils were fabricated via rf magnetron sputtering and ex situ crystallized in a forming gas atmosphere. The PZT/Cu system is interesting due to the low oxygen partial pressure (pO2) required during crystallization to prevent Cu oxidation, as well as the mismatch of substrate and film coefficients of thermal expansion. The formation of a Cu2O interlayer at pO2 levels not thermodynamically predicted suggests that the film and substrate cannot be thought of as being in equilibrium. It was expected that thicker films would provide a stronger barrier to oxygen diffusion from the ambient to the substrate, but instead Cu2O formation was found to increase with PZT film thickness. Therefore, the PZT film likely plays an active role in substrate oxidation, perhaps as a source of oxygen. Cu oxidation was significantly minimized by wrapping the films in a sacrificial copper envelope during crystallization. This likely resulted in a gettering of oxygen, which buffered the local pO2 inside the envelope near the—Cu–Cu2O thermodynamic equilibrium curve during heating. Two distinct mechanisms may be responsible for the oxidation of the Cu substrate. These can explain the film thickness and crystallization temperature dependence of the Cu2O interlayer formation, as well as justify the use of a Cu envelope. The dielectric response and hysteresis are shown for samples with varying amounts of the Cu2O interlayer. A dielectric relaxation near 1 kHz was correlated to the presence of the interlayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Piticescu RM, Mitoseriu L, Viviani M, Moagar Poladian V (2005) Preparation and characterisation of Pb(Zr0.52Ti0.48)0.975Nb0.025O3 ceramics: modelling the device. J Eur Ceram Soc 25(12):2491–2494. doi:10.1016/j.jeurceramsoc.2005.03.088

    Article  Google Scholar 

  2. Gebhardt S, Seffner L, Schlenkrich F, Schonecker A (2007) PZT thick films for sensor and actuator applications. J Eur Ceram Soc 27(13–15):4177–4180. doi:10.1016/j.jeurceramsoc.2007.02.122

    Article  Google Scholar 

  3. Muralt P (2000) PZT thin films for microsensors and actuators: where do we stand? IEEE Trans Ultrason Ferroelectr Freq Control 47(4):903–915. doi:10.1109/58.852073

    Article  Google Scholar 

  4. Burn I, Maher GH (1975) High resistivity BaTiO3 ceramics sintered in CO–CO2 atmospheres. J Mater Sci 10(4):633–640. doi:10.1007/BF00566571

    Article  Google Scholar 

  5. Buessem WR, Prokopowicz TI (1976) Electrode and materials problems in ceramic capacitors. Ferroelectrics 10(1):225–230. doi:10.1080/00150197608241984

    Article  Google Scholar 

  6. Ogawa T, Saitoh S, Sugiyama O, Kondoh A, Mochizuka T, Masuda H (1994) Sol–gel barium titanate thin films on nickel alloy electrodes. In: Proceedings of the 9th IEEE international symposium on applications of ferroelectrics, pp 399–403. doi:10.1109/ISAF.1994.522386

  7. Maria JP, Cheek K, Streiffer S, Kim SH, Dunn G, Kingon AI (2001) Lead zirconate titanate thin films on base-metal foils: an approach for embedded high-permittivity passive components. J Am Ceram Soc 84(10):2436–2438. doi:10.1111/j.1151-2916.2001.tb01029.x

    Article  Google Scholar 

  8. Losego MD, Jimison LH, Ihlefeld JF, Maria JP (2005) Ferroelectric response from lead zirconate titanate thin films prepared directly on low-resistivity copper substrates. Appl Phys Lett 86:172906. doi:10.1063/1.1919388

    Article  Google Scholar 

  9. Kingon AI, Srinivasan S (2005) Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications. Nat Mater 4:233–237. doi:10.1038/nmat1334

    Article  Google Scholar 

  10. Ma B, Chao S, Narayanan M, Liu S, Tong S, Koritala RE, Balachandran U (2013) Dense PLZT films grown on nickel substrates by PVP-modified sol-gel method. J Mater Sci 48:1180–1185. doi:10.1007/s10853-012-6857-5

    Article  Google Scholar 

  11. Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys. doi:10.1088/0034-4885/61/9/002

    Google Scholar 

  12. Dubois MA, Muralt P (1999) Measurement of the effective transverse piezoelectric coefficient e31, f of AlN and Pb(Zr x , Ti1-x)O3 thin films. Sens Actuators 77:106–112. doi:10.1016/S0924-4247(99)00070-9

    Article  Google Scholar 

  13. Griggio F, Jesse S, Kumar A, Ovchinnikov O, Kim H, Jackson TN, Damjanovic D, Kalinin SV, Trolier-McKinstry S (2012) Substrate clamping effects on irreversible domain wall dynamics in lead zirconate titanate thin films. Phys Rev Lett 108:157604. doi:10.1103/PhysRevLett.108.157604

    Article  Google Scholar 

  14. Kim T, Kingon AI, Maria JP, Croswell RT (2007) Lead zirconate titanate thin film capacitors on electroless nickel coated copper foils for embedded passive applications. Thin Solid Films 515:7331–7336. doi:10.1016/j.tsf.2007.02.085

    Article  Google Scholar 

  15. Gaskell DR (2008) Introduction to the thermodynamics of materials, 5th edn. Taylor and Francis, New York

    Google Scholar 

  16. Alexander JH (1978) Monolithic ceramic capacitors. U.S. Patent Office 4089813, ITT Industries, Inc: New York

  17. Akse JR (1986) Method for strengthening terminations on reduction fired multilayer capacitors. U.S. Patent Office 4571276, North American Philips Corp., New York

  18. Losego MD, Ihlefeld JF, Maria JP (2008) Importance of solution chemistry in preparing sol–gel PZT thin films directly on copper surfaces. Chem Mater 20(1):303–307. doi:10.1021/cm070999q

    Article  Google Scholar 

  19. Calderon V (2010) Design and implementation of a controlled pO2 system for annealing electroceramic thin films on flexible metallic substrates. Thesis, Oregon State University, Oregon

  20. Brennecka GL, Parish CM, Tuttle BA, Brewer LN, Rodriguez MA (2008) Reversibility of the perovskite-to-fluorite phase transformation in lead-based thin and ultrathin films. Adv Mater 20(8):1407–1411. doi:10.1002/adma.200702442

    Article  Google Scholar 

  21. Suchaneck G, Hubicka Z, Levin AA, Gunther S, Cada M, Dejneka A, Jastrabik L, Meyer DC, Schultheiss E, Gerlach G (2009) Recrystallization of the copper bottom electrode during complex oxide deposition onto Kapton films. In: Proceedings of the 18th IEEE international symposium on applications of ferroelectrics. doi:10.1109/ISAF.2009.5307558

  22. White WB, Roy R (1964) Phase relations in the system lead-oxygen. J Am Ceram Soc 47(5):242–249. doi:10.1111/j.1151-2916.1964.tb14404.x

    Article  Google Scholar 

  23. Ong RJ, Payne DA, Sottos NR (2005) Processing effects for integrated PZT: residual stress, thickness, and dielectric properties. J Am Ceram Soc 88(10):2839–2847. doi:10.1111/j.1551-2916.2005.00641.x

    Article  Google Scholar 

  24. Wu A, Vilarinho PM, Srinivasan S, Kingon AI, Reaney IM, Woodward D, Ramos AR, Alves E (2006) Microstructural studies of PZT thick films on Cu foils. Acta Mater 54:3211–3220. doi:10.1016/j.actamat.2006.03.006

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the U.S. Army Research Laboratory and specifically Dr. Ron Polcawich for directly supporting this research. We also acknowledge Hewlett-Packard for assistance with XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Gibbons.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walenza-Slabe, J., Gibbons, B.J. Processing of rf-sputtered lead zirconate titanate thin films on copper foil substrates. J Mater Sci 50, 6420–6426 (2015). https://doi.org/10.1007/s10853-015-9196-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9196-5

Keywords

Navigation