Skip to main content
Log in

PEDOT:PSS film: a novel flexible organic electrode for facile electrodeposition of dendritic tellurium nanostructures

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present study, flexible organic poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films were employed as working electrodes for the facile electrodeposition of tellurium (Te). Dendritic Te nanostructures were successfully deposited at a current of 8 mA/cm2 for 700 s at 25 °C, using Na2TeO3 as the Te source and HNO3 as the electrolyte. The phase and morphology of the resulting dendritic nanostructures were characterized by X-ray diffraction, energy-dispersive spectrometry, and scanning electron microscopy. It was found that the deposition temperature had a remarkable influence on the morphologies of the samples. A certain concentration of HNO3 was indispensable in the formation of dendritic Te nanostructures. High deposition current density promoted the formation of dendritic Te nanostructures and the morphologies could be affected by the Na2TeO3 concentration. It is expected that flexible organic PEDOT:PSS film working electrodes may provide a facile and general method for synthesizing materials with a wide array of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tangney P, Fahy S (2002) Density-functional theory approach to ultrafast laser excitation of semiconductors: application to the A 1 phonon in tellurium. Phys Rev B 65:054302–054304

    Article  Google Scholar 

  2. Beauvais J, Lessard RA, Galarneau P, Knystautas EJ (1990) Self-developing holographic recording in Li-implanted Te thin films. Appl Phys Lett 57:1354–1356

    Article  Google Scholar 

  3. Zhao AW, Ye CH, Meng GW, Zhang LD, Ajayan PM (2003) Tellurium nanowire arrays synthesized by electrochemical and electrophoretic deposition. J Mater Res 18:2318–2322

    Article  Google Scholar 

  4. Lu J, Xie Y, Xu F, Zhu L (2002) Study of the dissolution behavior of selenium and tellurium in different solvents-a novel route to Se, Te tubular bulk single crystals. J Mater Chem 12:2755–2761

    Article  Google Scholar 

  5. Siciliano T, Filippo E, Genga A, Micocci G, Siciliano M, Tepore A (2009) Single-crystalline Te microtubes: synthesis and NO2 gas sensor application. Sens Actuators B 142:185–190

    Article  Google Scholar 

  6. Liu ZP, Hu ZK, Xie Q, Yang BJ, Wu J, Qian YT (2003) Surfactant-assisted growth of uniform nanorods of crystalline tellurium. J Mater Chem 13:159–162

    Article  Google Scholar 

  7. Zhu YJ, Wang WW, Qi RJ, Hu XL (2004) Microwave-assisted synthesis of single crystalline tellurium nanorods and nanowires in ionic liquids. Angew Chem Int Ed 116:1434–1438

    Article  Google Scholar 

  8. Cho SO, Lee EJ, Lee HM, Kim JG, Kim YJ (2006) Controlled synthesis of abundantly branched, hierarchical nanotrees by electron irradiation of polymers. Adv Mater 18:60–65

    Article  Google Scholar 

  9. Sukhanova A, Baranov AV, Perova TS, Cohen JHM, NaPbev I (2006) Controlled self-assembly of nanocrystals into polycrystalline fluorescent dendrites with energy-transfer properties. Angew Chem Int Ed 45:2048–2052

    Article  Google Scholar 

  10. Cao MH, Liu TF, Gao S, Sun GB, Wu XL, Hu CW, Wang ZL (2005) Single-crystal dendritic micro-pines of magnetic α-Fe2O3: large-scale synthesis, formation mechanism, and properties. Angew Chem Int Ed 44:4197–4201

    Article  Google Scholar 

  11. Zhu HT, Zhang H, Liang JK, Rao GH, Li JB, Liu GY, Du ZM, Fan HM, Luo J (2011) Controlled synthesis of Tellurium nanostructures from nanotubes to nanorods and nanowires and their template applications. J Phys Chem C 115:6375–6380

    Article  Google Scholar 

  12. Mayers B, Xia YN (2002) One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach. J Mater Chem 12:1875–1881

    Article  Google Scholar 

  13. Chen HY, Lu HL, Nie YG, Zhang JH, Zhang MZ, Dai QQ, Gao SY, Kan SH, Li DM, Zou GT (2007) The fabrication of Te nanowires with different orientations by vacuum vapor deposition. Phys Lett A 362:61–65

    Article  Google Scholar 

  14. Kim KH, Zheng JY, Shin W, Kang YS (2012) Preparation of dendritic NiFe films by electrodeposition for oxygen evolution. RSC Adv 2:4759–4767

    Article  Google Scholar 

  15. Yi SJ, Sun LM, Lenaghan SC, Wang YZ, Chong XY, Zhang ZL, Zhang MJ (2013) One-step synthesis of dendritic gold nanoflowers with high surface-enhanced Raman scattering (SERS) properties. RSC Adv 3:10139–10144

    Article  Google Scholar 

  16. She GW, Shi WS, Zhang XH, Wong TL, Cai Y, Wang N (2009) Template-free electrodeposition of one-dimensional nanostructures of tellurium. Cryst Growth Des 9:663–666

    Article  Google Scholar 

  17. Zheng JY, Kang MJ, Song G, Son SI, Suh SP, Kim CW, Kang YS (2012) Morphology evolution of dendritic Fe wire array by electrodeposition, and photoelectrochemical properties of α-Fe2O3 dendritic wire array. Cryst Eng Comn 14:6957–6961

    Article  Google Scholar 

  18. Qiu R, Zhang XL, Qiao R, Li Y, Kim YI, Kang YS (2007) CuNi dendritic material: synthesis, mechanism discussion, and application as glucose sensor. Chem Mater 19:4174–4180

    Article  Google Scholar 

  19. Wang YM, Zhao DD, Zhao YQ, Xu CL, Li HL (2012) Effect of electrodeposition temperature on the electrochemical performance of a Ni(OH)2 electrode. RSC Adv 2:1074–1082

    Article  Google Scholar 

  20. Arenas JV, Pritzker M (2013) Effect of electrolyte and agitation on the anomalous behavior and morphology of electrodeposited Co-Ni alloys. J Solid State Electrochem 17:419–433

    Article  Google Scholar 

  21. Roncali J (1992) Conjugated poly(thiophenes): synthesis, functionalization, and applications. Chem Rev 92:711–738

    Article  Google Scholar 

  22. Nie GM, Cai T, Xu JK, Zhang SS (2008) Low-potential facile electrosyntheses of high-quality free-standing poly(fluorene-9-carboxylic acid) films. Electrochem Commun 10:186–189

    Article  Google Scholar 

  23. Hillman AR, Mallen EF (1987) Nucleation and growth of polythiophene films on gold electrodes. J Electroanal Chem 220:351–367

    Article  Google Scholar 

  24. Shi GQ, Jin S, Xue G, Li C (1995) A conducting polymer film stronger than aluminum. Science 267:994–996

    Article  Google Scholar 

  25. Prathish KP, Carvalho RC, Brett CMA (2014) Highly sensitive poly(3,4-ethylenedioxythiophene) modified electrodes by electropolymerisation in deep eutectic solvents. Electrochem Commun 44:8–11

    Article  Google Scholar 

  26. Huynh TP, Pieta P, D’Souza F, Kutner W (2013) Molecularly imprinted polymer for recognition of 5-fluorouracil by RNA-type nucleobase pairing. Anal Chem 85:8304–8312

    Article  Google Scholar 

  27. Song ZP, Zhou HS (2013) Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ Sci 6:2280–2301

    Article  Google Scholar 

  28. Alemu D, Wei HY, Ho KC, Chu CW (2012) Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ Sci 5:9662–9671

    Article  Google Scholar 

  29. Kim N, Kee S, Lee SH, Lee BH, Kahng YH, Jo YR, Kim BJ, Lee K (2014) Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv Mater 26:2268–2272

    Article  Google Scholar 

  30. Du Y, Shen SZ, Cai KF, Casey PS (2012) Research progress on polymer–inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37:820–841

    Article  Google Scholar 

  31. Li Y, Yue GT, Chen XY, He BL, Chu L, Chen HY, Wu JH, Tang QW (2013) Application of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate in polymer heterojunction solar cells. J Mater Sci 48:3528–3534. doi:10.1007/s10853-013-7147-6

    Article  Google Scholar 

  32. Mali SS, Patil PS, Bhosale PN, Hong CK (2014) Novel hybrid solar cells based on α-copper phthalocyanine–cadmium sulfide planar heterojunction. J Mater Sci 49:5100–5111. doi:10.1007/s10853-014-8218-z

    Article  Google Scholar 

  33. Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12:481–494

    Article  Google Scholar 

  34. Shi H, Liu CC, Xu JK, Song HJ, Lu BY, Jiang FX, Zhou WQ, Zhang G, Jiang QL (2013) Facile fabrication of PEDOT: PSS/polythiophenes bilayered nanofilms on pure organic electrodes and their thermoelectric performance. ACS Appl Mater Interfaces 5:12811–12819

    Article  Google Scholar 

  35. Song HJ, Liu CC, Zhu HF, Kong FF, Lu BY, Xu JK, Wang JM, Zhao F (2013) Improved thermoelectric performance of free-standing PEDOT:PSS/Bi2Te3 films with low thermal conductivity. J Electron Mater 42:1268–1274

    Article  Google Scholar 

  36. Mo DL, Zhou WQ, Ma XM, Xu JK, Jiang FX, Zhu DH (2015) Alkyl functionalized bithiophene end-capped with 3,4-ethylenedioxythiophene units: synthesis, electropolymerization and the capacitive properties of their polymers. Electrochim Acta 151:477–488

    Article  Google Scholar 

  37. Wei WF, Cui XW, Chen WX, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

    Article  Google Scholar 

  38. Xiao F, Yoo BY, Ryan MA, Lee KH, Myung NV (2006) Electrodeposition of PbTe thin films from acidic nitrate baths. Electrochim Acta 52:1101–1107

    Article  Google Scholar 

  39. Cao XZ, Song TY, Wang XQ (1994) Inorganic chemistry 3rd edn. High Education Publication, Beijing

  40. Lyahovitskaya V, Feldman Y, Zon I, Wachtel E, Lubomirsky I, Roytburd AL (2005) Polycrystalline macro-domains formed by self-organization of ferroelectric grains. Adv Mater 17:1956–1960

    Article  Google Scholar 

  41. Zhang YM, Ni YH, Wang XM, Xia J, Hong JM (2011) Polycrystalline Cu7Te4 dendritic microstructures constructed by spherical nanoparticles: fast electrodeposition, influencing factors, and the shape evolution. Cryst Growth Des 11:4368–4377

    Article  Google Scholar 

  42. Ni YH, Zhang YM, Hong JM (2011) Hierarchical Pb microstructures: a facile electrochemical synthesis, shape evolution and influencing factors. Cryst Eng Comm 13:934–940

    Article  Google Scholar 

  43. Li GR, Yao CZ, Lu XH, Zheng FL, Feng ZP, Yu XL, Su CY, Tong YX (2008) Facile and efficient electrochemical synthesis of PbTe dendritic structures. Chem Mater 20:3306–3314

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51303073 & 51203070), Jiangxi Provincial Department of Education (YC2013-S270 & GJJ13565), and Jiangxi Provincial Department of Science and Technology (20122BAB216011 & 20142BAB216032), Training Plan for the Main Subject of Academic Leaders of Jiangxi Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingkun Xu.

Additional information

Qinglin Jiang and Congcong Liu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Liu, C., Lu, B. et al. PEDOT:PSS film: a novel flexible organic electrode for facile electrodeposition of dendritic tellurium nanostructures. J Mater Sci 50, 4813–4821 (2015). https://doi.org/10.1007/s10853-015-8818-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8818-2

Keywords

Navigation