Skip to main content

Advertisement

Log in

Development of cytocompatible antibacterial electro-spun nanofibrous composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study presents a method of producing biocompatible nanofibrous composites containing antimicrobial polymers which have excellent antimicrobial efficacy. Specifically, antimicrobial cellulose acetate (CA) nanofibrous composites were prepared by adding poly[5,5-dimethyl-3-(3′-triethoxysilylpropyl)hydantoin] (PBA) to the CA solution using the electro-spinning technique followed with curing and exposure to diluted sodium hypochlorite. Scanning electron microscopy images demonstrated that CA nanofibers formed with diameters of 172 ± 62 nm. The chlorinated CA nanofibrous mats showed good UVA stability. The chlorinated CA nanofibrous mats completely inactivated Staphylococcus aureus (gram-positive) and Escherichia coli O157:H7 (gram-negative) within 30 min of contact time. The cell culture assay showed that the N-halamine-modified CA nanofibrous composites are non-toxic in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Weng Y, Guo X, Gregory R et al (2011) Preparation and evaluation of an antibacterial dental cement containing quaternary ammonium salts. J Appl Polym Sci 122:2542–2551

    Article  Google Scholar 

  2. Pencheva D, Bryaskova R, Kantardjiev T (2012) Polyvinyl alcohol/silver nanoparticles (PVA/AgNps) as a model for testing the biological activity of hybrid materials with included silver nanoparticles. Mater Sci Eng C 32:2048–2051

    Article  Google Scholar 

  3. Rabea EI, Badawy M, Stevens C et al (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465

    Article  Google Scholar 

  4. Chen Y, Han Q (2011) Designing N-halamine based antibacterial surface on polymers: fabrication, characterization, and biocidal functions. App Surf Sci 257:6034–6039

    Article  Google Scholar 

  5. Cerkez I, Kocer H, Worley SD et al (2011) N-Halamine biocidal coatings via a layer-by-layer assembly technique. Langmuir 27:4091–4097

    Article  Google Scholar 

  6. Barnes K, Liang J, Wu R et al (2006) Synthesis and antimicrobial applications of 5,5′-ethylenebis[5-methyl-3-(3-triethoxysilylpropyl)hydantoin. Biomaterials 27:4825–4830

    Article  Google Scholar 

  7. Chen Y, Zhong X, Zhang Q (2012) Synthesis of CO2-philic polysiloxane with N-halamine side groups for biocidal coating on cotton. Ind Eng Chem Res 51:9260–9265

    Article  Google Scholar 

  8. Chen Y, Worley SD, Kim J et al (2003) Biocidal poly(styrenehydantoin) beads for disinfection of water. Ind Eng Chem Res 422:280–284

    Article  Google Scholar 

  9. Sun G, Xu X, Bickett J et al (2001) Durable and regenerable antibacterial finishing of fabrics with a new hydantoin derivative. Ind Eng Chem Res 40:1016–1021

    Article  Google Scholar 

  10. Lee J, Broughton R, Akdag A et al (2007) Preparation and application of an s-Triazine-based novel N-halamine biocide for antimicrobial fibers. Fiber Poly 8:148–154

    Article  Google Scholar 

  11. Adrossamay M, Sun G (2009) Durable and rechargeable biocidal polypropylene polymers and fibers prepared by using reactive extrusion. J Biomed Mater Res B 891:93–101

    Article  Google Scholar 

  12. Hui F, Chouvy C (2013) Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterization, and applications. Biomacromolecules 14:585–601

    Article  Google Scholar 

  13. Cerkez I, Worley SD, Broughton RM et al (2013) Antimicrobial coatings for polyester and polyester/cotton blends. Prog Org Coat 76:1082–1087

    Article  Google Scholar 

  14. Cerkez I, Worley SD, Broughton RM et al (2013) Antimicrobial surface coatings for polypropylene nonwoven fabrics. React Funct Polym 73:1412–1419

    Article  Google Scholar 

  15. Cerkez I, Worley SD, Broughton RM et al (2013) Rechargeable antimicrobial coatings for poly(lactic acid) nonwoven fabrics. Polymer 54:536–541

    Article  Google Scholar 

  16. Zhu J, Bahramian Q, Gibson P et al (2012) Chemical and biological decontamination functions of nanofibrous membranes. J Mater Chem 22:8532–8540

    Article  Google Scholar 

  17. Tan X, Obendorf SK (2007) Fabrication and evaluation of electrospun nanofibrous antimicrobial nylon 6 membranes. J Memb Sci 305:287–298

    Article  Google Scholar 

  18. Sun X, Zhang L, Cao Z et al (2010) Electrospun composite nanofiber fabrics containing uniformly dispersed antimicrobial agents as an innovative type of polymeric materials with superior antimicrobial efficacy. ACS Appl Mater Interfaces 2:952–956

    Article  Google Scholar 

  19. Kim S, Jung D, Choi U et al (2011) Antimicrobial m-aramid nanofibrous membrane for nonpressure driven filtration. Ind Eng Chem Res 50:8693–8697

    Article  Google Scholar 

  20. Kim S, Lee J (2014) Antibacterial activity of polyacrylonitrile–chitosan electrospun nanofibers. Carbohydr Polym 102:231–237

    Article  Google Scholar 

  21. Zhang L, Luo J, Menkhaus TJ (2011) Antimicrobial nano-fibrous membranes developed from electrospun polyacrylonitrile nanofibers. J Memb Sci 369:499–505

    Article  Google Scholar 

  22. Ren X, Akadag A, Zhu C et al (2009) Electrospun polyacrylonitrile nanofibrous biomaterials. J Biomed Mater Res 2:385–390

    Article  Google Scholar 

  23. Ren X, Kocer H, Worley SD et al (2013) Biocidal nanofibers via electrospinning. J Appl Polym Sci 127:3192–3197

    Article  Google Scholar 

  24. Tan K, Obendorf SK (2007) Fabrication and evaluation of electrospun nanofibrous antimicrobial nylon 6 membranes. J Memb Sci 305:287–298

    Article  Google Scholar 

  25. Frenot A, Chronakis I (2003) Polymer nanofibers assembled by electrospinning. Colloid Interface Sci 8:64–75

    Article  Google Scholar 

  26. Li W, Li X, Wang T et al (2012) Nanofibrous mats layer-by-layer assembled via electrospun cellulose acetate and electrosprayed chitosan for cell culture. Eur Polym 48:1846–1853

    Article  Google Scholar 

  27. Rodríguez F, Galotto M, Guarda A et al (2012) Modification of cellulose acetate films using nanofillers based on organoclays. J Food Eng 110:262–268

    Article  Google Scholar 

  28. Kee C, Idris A (2010) Permeability performance of different molecular weight cellulose acetate hemodialysis membrane. Sep Purif Technol 75:102–113

    Article  Google Scholar 

  29. Ghaemi N, Madaenia S, Alizadeh A et al (2012) Effect of fatty acids on the structure and performance of cellulose acetate nanofiltration membranes in retention of nitroaromatic pesticides. Desalination 301:26–41

    Article  Google Scholar 

  30. Zavastin D, Cretescu I, Bezdadea M et al (2010) Preparation, characterization and applicability of cellulose acetate–polyurethane blend membrane in separation techniques. Colloid Surf A 370:120–128

    Article  Google Scholar 

  31. Ren X, Kou L, Liang J et al (2008) Antimicrobial efficacy and light stability of N-halamine siloxanes bound to cotton. Cellulose 15:593–598

    Article  Google Scholar 

  32. Kou L, Liang J, Ren X et al (2009) Synthesis of a water-soluble siloxane copolymer and its application for antimicrobial coatings. Ind Eng Chem Res 48:6521–6526

    Article  Google Scholar 

  33. Padmanabhuni R, Luo J, Cao Z et al (2012) Preparation and characterization of N-halamine-based antimicrobial fillers. Ind Eng Chem Res 51:5148–5156

    Article  Google Scholar 

  34. Kocer H, Cerkez I, Worley SD et al (2011) N-halamine copolymers for use in antimicrobial paints. ACS Appl Mater Interface 3:3189–3194

    Article  Google Scholar 

  35. Chen Z, Luo J, Sun Y (2005) Biocidal efficacy, biofilm-controlling function, and controlled release effect of chloromelamine-based bioresponsive fibrous materials. Biomaterials 28:1597–1609

    Article  Google Scholar 

  36. Sun Y, Sun G (2001) Durable and refreshable polymeric N-halamine biocides containing 3-(4-vinylbenzyl)-5,5-dimethylhydantoin. J Polym Sci A 39:3348–3355

    Article  Google Scholar 

  37. Cao Z, Sun Y (2009) Polymeric N-halamine latex emulsions for use in antimicrobial paints. Acs Appl Mater Interfaces 1:494–504

    Article  Google Scholar 

  38. Kim S, Kim J, Huang T et al (2009) Antimicrobial polyethylene terephthalate (PET) treated with an aromatic N-halamine precursor, m-aramid. J App Polym Sci 114:3835–3840

    Article  Google Scholar 

  39. Kocer H, Akdag A, Ren X et al (2008) Effect of alkyl derivatization on several properties of N-halamine antimicrobial siloxane coatings. Ind Eng Chem Res 47:7558–7563

    Article  Google Scholar 

  40. Ren X, Zhu C, Kou L et al (2010) Acyclic N-halamine polymeric biocidal films. J Bioactive Compat Polym 25:392–405

    Article  Google Scholar 

Download references

Acknowledgements

The financial support was provided by the National Thousand Young Talents Program. The authors acknowledge helpful discussions with Dr. S.D. Worley (Auburn University) and the assistance in XPS data collection by Dr. Jun Luo (Tsinghua University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehong Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Jiang, Z., Ma, K. et al. Development of cytocompatible antibacterial electro-spun nanofibrous composites. J Mater Sci 49, 6734–6741 (2014). https://doi.org/10.1007/s10853-014-8285-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8285-1

Keywords

Navigation