Skip to main content
Log in

Creep deformation behavior of Sn–Zn solder alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Creep properties of three Sn–Zn solder alloys (Sn–9Zn, Sn–20Zn, and Sn–25Zn, wt%) were studied using the impression creep technique. Microstructural characteristics were examined using a scanning electron microscope. The alloys exhibited stress exponents of about 5.0. The activation energy for creep was calculated to be ~50–75 kJ/mol with a mean value of 66.3 kJ/mol. The likely creep mechanism was identified to be the low temperature viscous glide of dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. The European Parliament and the Council of the European Union (2003) Directive 2002/95/EC on the restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment. J Eur Union 46(L 37):24–38

    Google Scholar 

  2. Plumbridge WJ, Gagg CR, Peters S (2001) The creep of lead-free solders at elevated temperatures. J Electron Mater 30:1178–1183

    Article  Google Scholar 

  3. Sidhu RS, Deng X, Chawla N (2008) Microstructure characterization and creep behavior of Pb-free Sn-rich solder alloys: part II. Creep behavior of bulk solder and solder/copper joints. Metall Mater Trans 39A:349–362

    Article  Google Scholar 

  4. Guo F, Choi S, Subramanian KN, Bieler TR, Lucas JP, Achari A, Paruchuri M (2003) Evaluation of creep behavior of near-eutectic Sn–Ag solders containing small amount of alloy additions. Mater Sci Eng A351:190–199

    Article  Google Scholar 

  5. Dutta I (2013) A constitutive model for creep of lead free solders undergoing strain-enhanced microstructural coarsening: a first report. J Electron Mater 32:201–207

    Article  Google Scholar 

  6. Mavoori H, Chin T, Vaynman S, Moran B, Keer L, Fine M (1997) Creep, stress relaxation, and plastic deformation in Sn–Ag and Sn–Zn eutectic solders. J Electron Mater 26:783–790

    Article  Google Scholar 

  7. Rani SD, Murthy GS (2004) Impression creep behavior of tin based lead free solders. Mater Sci Technol 20:403–408

    Article  Google Scholar 

  8. Kitajima M, Shono T (2005) Development of Sn–Zn–Al lead-free solder alloys. Fujitsu Sci Tech J 41:225–235

    Google Scholar 

  9. Kim YS, Kim KS, Hwang CW, Suganuma K (2003) Effect of composition and cooling rate on microstructure and tensile properties of Sn–Zn–Bi alloys. J Alloys Compd 352:237–242

    Article  Google Scholar 

  10. Mahmudi R, Geranmayeh AR, Noori H, Shahabi M (2008) Impression creep of hypoeutectic Sn–Zn lead-free solder alloys. Mater Sci Eng A491:110–116

    Article  Google Scholar 

  11. Sakr MS, Mohamed AZ, El-Daly AA, Abdel-Daiem AM, Bassyouni AH (1990) Microstructure dependence of steady state creep in Sn–Zn alloys. Egypt J Solids 13:34–41

    Google Scholar 

  12. Suganuma K, Kim SJ, Kim KS (2009) High temperature lead-free solders: properties and possibilities. JOM 61:64–71

    Article  Google Scholar 

  13. Sastry DH, Murthy GS (1986) Impression creep behavior of metals at high temperatures. Trans Ind Inst Met 39:369–379

    Google Scholar 

  14. Baker H, Okamoto H (1992) ASM handbook: alloy phase diagrams, vol 3. ASM International, Materials Park

    Google Scholar 

  15. Vnuk F, Sahoo M, Baragar D, Smith RW (1980) Mechanical properties of Sn–Zn eutectic alloys. J Mater Sci 15:2573–2583. doi:10.1007/BF00550762

    Article  Google Scholar 

  16. Yu EC, Li JCM (1977) Impression creep of LiF single crystals. Philos Mag 36:811–825

    Article  Google Scholar 

  17. Hussien S, Jung YH, Murty KL (1985) An evaluation of mechanical anisotropy of Zircaloy using impression testing. Scripta Met 19:1045–1048

    Article  Google Scholar 

  18. Godavarti PS, Murty KL (1987) Creep anisotropy of zinc using impression tests. J Mater Sci Lett 6(1987):456–458

    Article  Google Scholar 

  19. Bird JE, Mukherjee AK, Dorn JE (1969) Correlations between high temperature creep behavior and structure. In: Brandon DG, Rosen A (eds) Quantitative relation between properties and microstructure. Israel University Press, Jerusalem, pp 255–342

    Google Scholar 

  20. Subrahmanyam B (1972) Elastic moduli of some eutectic alloys. Trans Jpn Inst Met 13:89–92

    Google Scholar 

  21. Mathew MD, Yang H, Movva S, Murty KL (2005) Creep deformation characteristics of tin and tin based electronic solder alloys. Metall Mater Trans A36:99–105

    Article  Google Scholar 

  22. Charit I, Murty KL (2008) Creep behavior of Nb-modified zirconium alloys. J Nucl Mater 374:354–363

    Article  Google Scholar 

  23. Boas W, Fensham PJ (1949) Rate of self-diffusion in tin crystals. Nature 164:1127–1128

    Article  Google Scholar 

  24. Sherby OD, Burke PM (1967) Mechanical behavior of crystalline solids at elevated temperature. Prog Mater Sci 1:325–390

    Google Scholar 

  25. Meakin JD, Klokholm E (1960) Self-diffusion in tin single crystals. Trans AIME 218:463–466

    Google Scholar 

  26. Devries KL, Baker GS, Gibbs P (1963) Effect of pressure on creep in tin. J Appl Phys 34:2258

    Article  Google Scholar 

  27. Wiseman CD, Sherby OD, Dorn JE (1957) Creep of single crystals and polycrystals of aluminum, lead and tin. Trans AIME 9:57–59

    Google Scholar 

  28. Bonar LG, Craig GB (1958) Activation energy for creep in tin. Can J Phys 36:1445–1449

    Article  Google Scholar 

  29. Yang F, Li JCM (2007) Deformation behavior of tin and some tin alloys. J Mater Sci Mater Electron 18:191–210

    Article  Google Scholar 

  30. Shrestha T, Basirat M, Charit I, Potirniche G, Rink K, Sahaym U (2012) Creep deformation mechanisms in modified 9Cr–1Mo steel. J Nucl Mater 423:110–119

    Article  Google Scholar 

  31. Huang FH, Huntington HB (1974) Diffusion in Sb124, Cd109, Sn113 and Zn65. Phys Rev B 9:1479–1488

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrajit Charit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrestha, T., Gollapudi, S., Charit, I. et al. Creep deformation behavior of Sn–Zn solder alloys. J Mater Sci 49, 2127–2135 (2014). https://doi.org/10.1007/s10853-013-7905-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7905-5

Keywords

Navigation