Skip to main content
Log in

Room temperature mechanical properties of natural-mineral-based thermoelectrics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Low cost, highly efficient thermoelectric materials for waste heat recovery applications can be made by combining the naturally occurring thermoelectric mineral tetrahedrite (Cu10Zn2As4S13) and the synthetic compound Cu12Sb4S13. To better utilize this material in waste heat harvesting applications, it is essential to characterize the material’s mechanical properties including elastic modulus, hardness, and fracture toughness. In this study, powders of Cu10Zn2As4S13 were mixed with varying amounts of Cu12Sb4S13 and then densified by hot pressing. The room temperature mechanical properties were investigated as a function of (i) composition and (ii) ball milling time. Elastic moduli were measured using resonant ultrasound spectroscopy. Hardness and fracture toughness were determined by Vickers indentation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Morelli DT, Meisner GP (1995) J Appl Phys 77:3777

    Article  CAS  Google Scholar 

  2. Sales BC, Mandrus D, Williams RK (1996) Science 272:1325

    Article  CAS  Google Scholar 

  3. Shi X, Yang J, Salvador JR, Chi M, Cho JY, Wang H, Bai S, Yang J, Zhang W, Chen L (2011) J Am Chem Soc 133:7837

    Article  CAS  Google Scholar 

  4. Biswas K, He J, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG (2012) Nature 489:414

    Article  CAS  Google Scholar 

  5. Lu X, Morelli DT, Xia Y, Zhou F, Ozolins V, Chi H, Zhou X, Uher C (2013) Adv Energy Mater 3:342

    Article  CAS  Google Scholar 

  6. Lu X, Morelli DT (2013) Phys Chem Chem Phys 15:5762

    Article  CAS  Google Scholar 

  7. Kaliakin VN (2002) In introduction to approximate solution techniques, numerical modeling, and finite element methods. Marcel Dekker, New York

    Google Scholar 

  8. Martin HC, Carey GF (1973) In introduction to finite element analysis. McGraw-Hill, New York

    Google Scholar 

  9. Zienkiewicz OC (2005) The finite element method for solid and structural mechanics. Elsevier, Boston

    Google Scholar 

  10. Wurst JC, Nelson JA (1972) J Am Ceram Soc 55:109

    Article  CAS  Google Scholar 

  11. Migliori A, Sarrao JL (1997) Resonant ultrasonic spectroscopy. Wiley, Hoboken

    Google Scholar 

  12. Ren F, Case ED, Sootsman JR, Kanatzidis MG, Kong H, Uher C, Lara-Curzio E, Trejo RM (2008) Acta Mater 56:5954

    Article  CAS  Google Scholar 

  13. Ren F, Case ED, Ni JE, Timm EJ, Lara-Curzio E, Trejo RM, Lin CH, Kanatzidis MG (2009) Philos Mag 89:143

    Article  CAS  Google Scholar 

  14. Schmidt RD, Case ED, Lehr GJ, Morelli DT (2013) Intermetallics 35:15

    Article  CAS  Google Scholar 

  15. Wachtman JB, Cannon WR, Matthewson MJ (2009) Mechanical properties of ceramics, 2nd edn. Wiley, New York

    Book  Google Scholar 

  16. Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:533

    Article  CAS  Google Scholar 

  17. Kim SB, Kim DY (1990) J Am Ceram Soc 73:161

    Article  CAS  Google Scholar 

  18. Ravinder D, Alivelumanga T (2001) Mater Lett 49:1

    Article  CAS  Google Scholar 

  19. Ren F, Case ED, Timm EJ, Schock HJ (2007) Philos Mag 87:4907

    Article  CAS  Google Scholar 

  20. Schenk M, Le THD (1998) Semicond Sci Technol 13:335

    Article  CAS  Google Scholar 

  21. Ren F, Case ED, Timm EJ, Schock HJ (2008) J Alloy Compd 455:340

    Article  CAS  Google Scholar 

  22. Shibata K, Yoshinaka M, Hirota K, Yamaguchi O (1997) Mater Res Bull 32:627

    Article  CAS  Google Scholar 

  23. Fu YP, Hu SH, Liu BL (2009) Ceram Int 35:3005

    Article  CAS  Google Scholar 

  24. Charitidis CA, Karakasidis TE, Kavouras P, Karakostas TH (2007) J Phys Condens Matter 19:266209

    Article  CAS  Google Scholar 

  25. Anno H, Hokazono M, Shirataki R, Nagami Y (2013) J Mater Sci 48:2846. doi:10.1007/s10853-012-7017-7

    Article  CAS  Google Scholar 

  26. Kallel AC, Roux G, Martin CL (2013) Mater Sci Eng A564:65

    Google Scholar 

  27. Morrison AQ, Case ED, Ren F, Baumann AJ, Kleinow DC, Ni JE, Hogan TP, D’Angelo J, Matchanov NA, Hendricks TJ, Karri NK, Cauchy C, Barnard J, Kanatzidis MG (2012) Mater Chem Phys 134:973

    Article  CAS  Google Scholar 

  28. Schmidt RD, Case ED, Giles J III, Ni JE, Hogan TP (2012) J Electron Mater 41:1210

    Article  CAS  Google Scholar 

  29. Schmidt RD, Ni JE, Case ED, Sakamoto JS, Kleinow DC, Wing BL, Stewart RC, Timm EJ (2010) J Alloy Compd 504:303

    Article  CAS  Google Scholar 

  30. Ni JE, Case ED, Khabir KN, Stewart RC, Wu CI, Hogan TP, Timm EJ, Girard SN, Kanatzidis MG (2010) Mater Sci Eng B 170:58

    Article  CAS  Google Scholar 

  31. Eilertsen J, Subramanian MA, Kruzic JJ (2013) J Alloy Compd 552:492

    Article  CAS  Google Scholar 

  32. Quinn JB, Quinn GD (1997) J Mater Sci 32:4331

    Article  CAS  Google Scholar 

  33. Suryanarayana C (2001) Prog Mater Sci 46:1–184

    Article  CAS  Google Scholar 

  34. Hall BD, Case ED, Ren F, Johnson J, Timm EJ (2009) Mater Chem Phys 113:497

    Article  CAS  Google Scholar 

  35. Pilchak AL, Ren F, Case ED, Timm EJ, Wu CI, Hogan TP, Schock HJ (2007) Philos Mag 87:4567

    Article  CAS  Google Scholar 

  36. Singh S, Godkhindi MM, Krishnarao RV, Murty BS (2009) J Eur Ceram Soc 29:2069

    Article  CAS  Google Scholar 

  37. ASTM C1327–08 (2008) Standard test method for Vickers indentation hardness of advanced ceramics. ASTM International, West Conshohocken

    Google Scholar 

  38. Li Z, Ghosh A, Kobayashi AS, Bradt RC (1989) J Am Ceram Soc 72:904

    Article  CAS  Google Scholar 

  39. Ponton CB, Rawlings RD (1989) Mater Sci Technol 5:865

    Article  Google Scholar 

  40. Ponton CB, Rawlings RD (1989) Mater Sci Technol 5:961

    Article  CAS  Google Scholar 

  41. B. J. Wuensch (1966) Zeitschrift fur Kristallographie, 123:S. 1

  42. Pfitzner A, Evain M, Petricek V (1997) Acta Crystallogr Sec B Struct Sci 53:337

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Department of Energy, “Revolutionary Materials for Solid State Energy Conversion Center,” an Energy Frontiers Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic energy Sciences under award number DE-SC0001054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eldon D. Case.

Appendices

Appendix 1: Crack length as a function of load and relationship to equation 3

As reviewed by Ponton and Rawlings [39, 40], a number of expressions exist in the literature for calculating fracture toughness from Vickers indentation cracks. In particular, dependence of crack length, c, on load F can depend on the indentation crack profile. For example, Palmquist cracks (which have separate, semi-elliptical cracks on either side of the indentation impression [39]) have a different c versus F dependence than fully developed radial cracks [16, 39, 40]. To highlight the c versus F relationship, Eq. 3 can be rewritten as

$$ F = Dc^{ 1. 5} $$
(6)

where \( D = K{}_{c}/\xi (E/H)^{0.5} \). In order to experimentally determine the c versus F dependence of the Vickers indentation cracks in this work, a separate crack length versus indentation load study was performed in which a 0.50 Syn specimen was indented at loads of 0.98, 1.96, 2.94, and 4.90 N with 10 indentations at each load. The resulting average radial crack length versus load data was least-squares fit to Eq. 6, with a coefficient of determination, R 2, of 0.983 (Fig. 9), indicating that the indentation data are consistent with the fully developed radial crack system assumed by Eq. 3 [16].

Fig. 9
figure 9

A plot of c 1.5 versus indentation load, where c is the radial crack length induced by Vickers indentation on a 0.50 Syn composition specimen. The straight line represents a least-squares fit to Eq. 6. The crack length versus load behavior is consistent with that expected from Eq. 3

Appendix 2: Estimation of theoretical densities for intermediate compounds

In order to determine the porosity of the specimens included in this study, the theoretical densities of the intermediate compounds must be known. The natural mineral Cu12−x (Zn, Fe) x As4S13 and the intermediate compounds included in this study are solid solutions of tetrahedrite (Cu12Sb4S13) and the synthetic compound tennantite (Cu12As4S13) [5, 6]. In the natural mineral, Zn and Fe are substituted on the Cu site [5, 6]. However, the ratio of Zn and Fe on the Cu site can vary within a bulk specimen of the natural mineral, making precise theoretical density calculations difficult. In order to estimate the theoretical density of the intermediate compounds, ρ theo est, the following interpolation was employed,

$$ \rho_{{{\text{theo}}\;{\text{est}}}} = \frac{{Mf_{\text{tet}} + Mf_{\text{ten}} }}{{\frac{{Mf_{\text{tet}} }}{{\rho_{\text{tet}} }} + \frac{{Mf_{\text{ten}} }}{{\rho_{\text{ten}} }}}} = \frac{{f{}_{\text{tet}} + f_{\text{ten}} }}{{\frac{{f_{\text{tet}} }}{{\rho_{\text{tet}} }} + \frac{{f_{\text{ten}} }}{{\rho_{\text{ten}} }}}} = \frac{1}{{\frac{{f_{\text{tet}} }}{{\rho_{\text{tet}} }} + \frac{{f_{\text{ten}} }}{{\rho_{\text{ten}} }}}} $$
(7)

In Eq. 7, the theoretical densities of the tetrahedrite (ρ tet) and tennantite (ρ ten) were calculated from the mass per unit cell and the lattice parameter data from Wuensch [41] and Pfitzner et al. [42], respectively, which gave theoretical densities ρ tet = 5.05 g cm−3 ρ ten = 4.67 g cm−3. Also, M is the total specimen mass and f tet and f ten are the mass fractions of the tetrahedrite and tennantite, respectively. In this calculation we assume that since (i) the mass differences among the Cu, Fe, and Zn ions are small, (ii) the Zn and Fe impurity concentration in the natural mineral is low, (iii) the crystal structure is the same for Cu12Sb4S13, Cu12As4S13, the natural mineral Cu12−x (Zn, Fe) x As4S13 and each of the intermediate compounds, then the variations in the Zn and Fe impurity levels and the details of how they are incorporated into the structure of each composition will not substantially affect the theoretical density of the intermediate compounds.

Given these assumptions, most of the difference among the theoretical densities of the intermediate compounds will be due to the changes in the Sb/As ratio thus the interpolation between the theoretical densities of Cu12Sb4S13 and the natural mineral (Eq. 7) should give reasonable estimates of the theoretical densities of the intermediate compounds. The theoretical densities for all of the compositions in this study are given in Table 1, along with the calculated porosities of the sintered specimens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, X., Case, E.D., Lu, X. et al. Room temperature mechanical properties of natural-mineral-based thermoelectrics. J Mater Sci 48, 7540–7550 (2013). https://doi.org/10.1007/s10853-013-7569-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7569-1

Keywords

Navigation