Skip to main content
Log in

Effect of erodent properties on the solid particle erosion mechanisms of brittle materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to study the effects of particle properties on the solid particle erosion mechanisms of brittle bulk materials, six target materials were tested using two different powders (alumina and glass) at velocities ranging from 25 to 75 m/s. Following in depth characterizations of the targets and of the particles before and after testing, it was found that lateral fracture was the dominant material removal mechanism as predicted by the elasto-plastic theory of erosion. In the case of glass powder, for which the hardness of the particle is lower than the hardness of the target, particle deformation and fragmentation were found to be important factors explaining lower erosion rates. The higher than predicted velocity exponents point toward a velocity-dependent damage accumulation mechanism which was found to be correlated to target yield pressure (H 3 /E 2). Although damage accumulation seems to be necessary for material removal when using both powders, the effect is more pronounced for the softer glass powder because of kinetic energy dissipation through different means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hutchings IM (1992) Tribology: friction and wear of engineering materials. CRC Press, London

    Google Scholar 

  2. Finnie I (1958) Proceedings of the 3rd US National Congress of Applied Mechanics, New York, 527

  3. Hutchings IM (1981) Wear 70:269

    Article  CAS  Google Scholar 

  4. Lawn BR, Fuller ER, Wiederhorn SM (1976) J Am Ceram Soc 59:193

    Article  CAS  Google Scholar 

  5. Hockey BJ, Wiederhorn SM, Johnson H (1978) Clays Clay Miner 3:379

    CAS  Google Scholar 

  6. Hockey BJ, Wiederhorn SM (1979) Proceedings of the Annual Industrial Pollution Conference, Philadelphia, 26

  7. Wiederhorn SM, Lawn BR (1979) J Am Ceram Soc 62:66

    Article  CAS  Google Scholar 

  8. Slikkerveer PJ, Bouten PCP, in’t Veld FH, Scholten H (1998) Wear 217:237

    Article  CAS  Google Scholar 

  9. Evans AG, Gulden ME, Rosenblatts M (1978) Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences) 361: 343

  10. Bitter JGA (1963) Wear 6:5

    Article  Google Scholar 

  11. Wheeler DW, Wood RJK (1999) Wear 225–229:523

    Article  Google Scholar 

  12. Basak AK, Fan JM, Wang J, Mathew P (2010) Wear 269:269. doi:10.1016/j.wear.2010.04.006

    Article  CAS  Google Scholar 

  13. Hutchings IM (1992) Key Eng Mater 71:75

    Article  CAS  Google Scholar 

  14. Lawn BR, Evans AG (1977) J Mater Sci 12:2195. doi:10.1007/BF00552240

    Article  CAS  Google Scholar 

  15. Lawn BR, Evans AG, Marshall DB (1980) J Am Ceram Soc 63:574

    Article  CAS  Google Scholar 

  16. Marshall DB, Lawn BR, Evans AG (1982) J Am Ceram Soc 65:561

    Article  CAS  Google Scholar 

  17. Wiederhorn SM, Hockey BJ, Ruff AW, Ives LK (1980) Dimens NBS 64:20

    Google Scholar 

  18. Buijs M (1994) J Am Ceram Soc 77:1676

    Article  CAS  Google Scholar 

  19. ASTM-G76 (2007) Standard specification for carbon structural steel. ASTM International, West Conshohocken

    Google Scholar 

  20. Bousser E, Benkahoul M, Martinu L, Klemberg-Sapieha JE (2008) Surf Coat Technol 203:776. doi:10.1016/j.surfcoat.2008.08.012

    Article  CAS  Google Scholar 

  21. Tabakoff W (1992) Surf Coat Technol 52:65

    Article  CAS  Google Scholar 

  22. Immarigeon J-P, Chow D, Parameswaran VR, Au P, Saari H, Koul AK (1997) Adv Perform Mater 4:371

    Article  CAS  Google Scholar 

  23. Wada S (1992) Key Eng Mater 71:57

    Article  Google Scholar 

  24. Srinivasan S, Scattergood RO (1988) Wear 128:139. doi:10.1016/0043-1648(88)90180-9

    Article  CAS  Google Scholar 

  25. Murugesh L, Scattergood RO (1990) Wear 141:115. doi:10.1016/0043-1648(90)90196-h

    Article  CAS  Google Scholar 

  26. Murugesh L, Scattergood RO (1991) J Mater Sci 26:5456. doi:10.1007/BF00553644

    Article  CAS  Google Scholar 

  27. Shipway PH, Hutchings IM (1991) Wear 149:85. doi:10.1016/0043-1648(91)90366-3

    Article  CAS  Google Scholar 

  28. Shipway PH, Hutchings IM (1996) Wear 193:105

    Article  CAS  Google Scholar 

  29. Curkovic L, Kumic I, Grilec K (2011) Ceram Int 37:29. doi:10.1016/j.ceramint.2010.08.029

    Article  CAS  Google Scholar 

  30. Ruff AW, Ives LK (1975) Wear 35:195

    Article  Google Scholar 

  31. Oliver WC, Pharr GM (1992) J Mater Res 7:1564

    Article  CAS  Google Scholar 

  32. Yang R, Zhang T, Jiang P, Bai Y (2008) Appl Phys Lett 92:261903. doi:10.1063/1.2944138

    Article  Google Scholar 

  33. Lawn BR, Cook RF (2012) J Mater Sci 47:1. doi:10.1007/s10853-011-5865-1

    Article  CAS  Google Scholar 

  34. Pharr GM (1998) Mater Sci Eng A A253:151

    CAS  Google Scholar 

  35. Morris DJ, Cook RF (2005) Int J Fract 136:237. doi:10.1007/s10704-005-6034-9

    Article  Google Scholar 

  36. Morris DJ, Vodnick AM, Cook RF (2005) Int J Fract 136:265. doi:10.1007/s10704-005-6033-x

    Article  CAS  Google Scholar 

  37. Jang J-I, Pharr GM (2008) Acta Mater 56:4458. doi:10.1016/j.actamat.2008.05.005

    Article  CAS  Google Scholar 

  38. Leonardi A, Furgiuele F, Wood RJK, Syngellakis S (2010) Eng Fract Mech 77:264. doi:10.1016/j.engfracmech.2009.08.003

    Article  Google Scholar 

  39. Zhang T, Feng Y, Yang R, Jiang P (2010) Scripta Mater 62:199. doi:10.1016/j.scriptamat.2009.10.025

    Article  CAS  Google Scholar 

  40. Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:533

    Article  CAS  Google Scholar 

  41. de Boer GBJ, de Weerd C, Thoenes D, Goossens HWJ (1987) Part Charact 4:14

    Article  Google Scholar 

  42. Palik ED (1985) Handbook of optical constants of solids. Academic Press Inc, Orlando

    Google Scholar 

  43. Chicot D, Pertuz A, Roudet F, Staia MH, Lesage J (2004) Mater Sci Technol 20:877. doi:10.1179/026708304225017427

    Article  CAS  Google Scholar 

  44. Wiederhorn SM, Hockey BJ (1983) J Mater Sci 18:766. doi:10.1007/BF00745575

    Article  CAS  Google Scholar 

  45. Bull SJ (2006) J Phys D (Appl Phys) 39:1626

    Article  CAS  Google Scholar 

  46. Chen J, Bull SJ (2006) J Mater Res 21:2617. doi:10.1557/jmr.2006.0323

    Article  CAS  Google Scholar 

  47. Johnson KL (1987) Contact mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  48. Tsui TY, Pharr GM, Oliver WC, et al. (1995) Thin films: stresses and mechanical properties V. Symposium, 28 Nov–2 Dec. 1994 Mater Res Soc, Pittsburgh

  49. Leyland A, Matthews A (2000) Wear 246:1. doi:10.1016/s0043-1648(00)00488-9

    Article  CAS  Google Scholar 

  50. Hassani S, Bielawski M, Beres W, Martinu L, Balazinski M, Klemberg-Sapieha JE (2008) Surf Coat Technol 203:204. doi:10.1016/j.surfcoat.2008.08.050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Fonds de recherche du Québéc—Nature et Technologies (FQRNT), the Consortium for Research and Innovation in Aerospace in Québec (CRIAQ) and the Natural Sciences and Engineering Research Council (NSERC) of Canada. The authors also wish to thank Francis Turcot for his invaluable technical expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Klemberg-Sapieha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bousser, E., Martinu, L. & Klemberg-Sapieha, J.E. Effect of erodent properties on the solid particle erosion mechanisms of brittle materials. J Mater Sci 48, 5543–5558 (2013). https://doi.org/10.1007/s10853-013-7349-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7349-y

Keywords

Navigation