Skip to main content

Advertisement

Log in

Fabrication of advanced “green” composites using potassium hydroxide (KOH) treated liquid crystalline (LC) cellulose fibers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Advanced green composites having excellent strength and stiffness were fabricated using liquid crystalline (LC) cellulose fibers and soy protein isolate (SPI) resin. Further, LC cellulose fibers were treated with potassium hydroxide (KOH) to improve their tensile strength and Young’s modulus by increase the crystallinity of cellulose. The improvements were significant when the treatment was carried out while keeping the fibers under tension. The Young’s modulus (stiffness) of the LC cellulose fibers increased by about 33 % from 47.8 to 63.7 GPa and the strength increased by about 18 % from 1483 MPa to 1749 MPa. X-ray diffraction (XRD) study of the LC cellulose fibers showed over 50 % increase in crystallinity after the KOH treatment. The mechanical properties of the LC cellulose fiber-reinforced composites were also high and improved further when the KOH treated fibers were used. With 65 % fiber volume it should be possible to obtain composites with strength above 1020 MPa and modulus of over 37 GPa, making them truly advanced green composites that could be used for structural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Netravali AN, Chabba S (2003) Mater Today 6(4):22

    Article  Google Scholar 

  2. Liu Z, Erhan SZ, Akin DE, Barton FE (2006) J Agric Food Chem 54:2134

    Article  CAS  Google Scholar 

  3. Huda MS, Mohanty AK, Drzal LT, Schut E, Misra M (2005) J Mater Sci 40(16):4221. doi:10.1007/s10853-005-1998-4

    Article  CAS  Google Scholar 

  4. Mohanty AK, Misra M, Drzal LT (2002) J Polym Environ 10:19

    Article  CAS  Google Scholar 

  5. Vilaseca F, Mendez JA, Pèlach A, Llop M, Cañigueral N, Gironès J, Turon X, Mutjé P (2007) Process Biochem 42:329

    Article  CAS  Google Scholar 

  6. Cao Y, Goda K, Shibata S (2007) Adv Compos Mater 16(4):283

    Article  CAS  Google Scholar 

  7. Chabba S, Netravali AN (2005) J Mater Sci 40(23):6263. doi:10.1007/s10853-005-3143-9

    Article  CAS  Google Scholar 

  8. Liu W, Misra M, Askeland P, Drzal LT, Mohanty AK (2005) Polymer 46:2710

    Article  CAS  Google Scholar 

  9. Alvarez V, Vázquez A, Bernal C (2006) J Compos Mater 40(1):21

    Article  CAS  Google Scholar 

  10. Hassan ML, Hassan EA, Oksman KN (2011) J Mater Sci 46(6):1732. doi:10.1007/s10853-010-4992-4

    Article  CAS  Google Scholar 

  11. Mohanty AK, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276/277(1):1

    Article  CAS  Google Scholar 

  12. Goda K, Sreekala MS, Gomes A, Kaji T, Ohgi J (2006) Compos A 37(12):2213

    Article  Google Scholar 

  13. Gomes A, Matsuo T, Goda K, Ohgi J (2007) Compos A 38(8):1811

    Article  Google Scholar 

  14. Kim JT, Netravali AN (2010) Compos A 41(9):1245

    Article  Google Scholar 

  15. Kim JT, Netravali AN (2011) Compos Sci Technol 71(4):541

    Article  CAS  Google Scholar 

  16. Sekine N, Tada S, Higuchi T, Furumura Y, Takao T, Yamanaka A (2005) Physica C 426/431:1343

    Article  Google Scholar 

  17. Boerstoel H, Maatman H, Westerink JB, Koenders BM (2001) Polymer 42(17):7371

    Article  CAS  Google Scholar 

  18. Netravali AN, Huang X, Mizuta K (2007) Adv Compos Mater 16(4):269

    Article  CAS  Google Scholar 

  19. Dinand E, Vignon M, Chanzy H, Heux L (2002) Cellulose 9(1):7

    Article  CAS  Google Scholar 

  20. Liu YP, Hu H (2008) Fibers Polym 9(6):735

    Article  CAS  Google Scholar 

  21. Öztürk HB, Abu-Rous M, MacNaughtan B, Schuster KC, Mitchell JR, Bechtold T (2010) Macromol Symp 294(2):24

    Article  Google Scholar 

  22. Suizu N, Uno T, Goda K, Ohgi J (2009) J Mater Sci 44(10):2477. doi:10.1007/s10853-009-3317-y

    Article  CAS  Google Scholar 

  23. Kim JT, Netravali AN (2010) J Adhes Sci Technol 24(1):203

    Article  CAS  Google Scholar 

  24. Yamamoto Y, Zahora D, Netravali AN (2007) Compos Interfaces 14(7–9):699

    Article  CAS  Google Scholar 

  25. Åkerholm M, Hinterstoisser B, Salmén L (2004) Carbohydr Res 339(3):569

    Article  Google Scholar 

  26. Evans R, Newman RH, Roick UC, Suckling ID, Wallis AFA (1995) Holzforschung 49(6):498

    Article  CAS  Google Scholar 

  27. Schenzel K, Fischer S, Brendler E (2005) Cellulose 12(3):223

    Article  CAS  Google Scholar 

  28. Thygesen A, Oddershede J, Lilholt H (2005) Cellulose 12(6):563

    Article  CAS  Google Scholar 

  29. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Biotechnol Biofuels 3:10

    Article  Google Scholar 

  30. Sikkema DJ, Northolt MG, Pourdeyhimi B (2003) MRS Bull 28(8):579

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) by the Ministry of Education, Science and Technology (No. 2012R1A1A1009245). We also thank Center for Materials Research (CCMR) and the Department of Fiber Science & Apparel Design (FSAD) for providing the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Tae Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.T., Netravali, A.N. Fabrication of advanced “green” composites using potassium hydroxide (KOH) treated liquid crystalline (LC) cellulose fibers. J Mater Sci 48, 3950–3957 (2013). https://doi.org/10.1007/s10853-013-7199-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7199-7

Keywords

Navigation