Skip to main content

Advertisement

Log in

The effect of indentation-induced microcracks on the elastic modulus of hydroxyapatite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The presence of microcracks in materials affects a wide range of mechanical properties including elastic modulus, Poisson’s ratio, fracture strength, and fracture toughness. The microcrack-induced reductions of the Young’s modulus, E, and Poisson’s ratio, υ, are functions of the size, geometry, and number density of microcracks. In this study, an array of Vickers indentation-induced microcracks was placed on the surfaces of two hydroxyapatite (HA) specimens with totals of 391 and 513 indentations per specimen. This study tests the validity of theoretical studies of microcrack damage-induced changes in E and υ, where the changes are expressed either by (i) the volumetric crack number density, N and (ii) the crack damage parameter, ε. All elasticity measurements were done via resonant ultrasound spectroscopy. For both the HA specimens included in the study and alumina specimens indented in an earlier study [J Mater Sci 38:1910. doi: 10.1007/BF00595764, 1], E and υ decreased approximately linearly with increasing microcrack damage. The slopes of the E and υ versus N and ε are also computed and compared to the available theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim Y, Case ED, Gaynor S (1993) J Mater Sci 28:1910. doi:10.1007/BF00595764

    Article  CAS  Google Scholar 

  2. Misra V, Pandey SD (2005) Bull Environ Contam Toxicol 74:725

    Article  CAS  Google Scholar 

  3. da Silva OG, da Silva EC, da Fonseca MG, Arakaki LNH, Airoldi C (2006) J Colloid Interface Sci 302:485

    Article  Google Scholar 

  4. Opre Z, Grunwaldt JD, Maciejewski M, Ferri D, Mallat T, Baiker A (2005) J Catal 230:406

    Article  CAS  Google Scholar 

  5. Jamwal N, Gupta M, Paul S (2008) Green Chem 10:999

    Article  CAS  Google Scholar 

  6. Rakap M, Ozkar S (2011) Int J Hydrogen Energy 36:7019

    Article  CAS  Google Scholar 

  7. Silva CC, Almeida AFL, De Oliveira RS, Pinheiro AG, Goes JC, Sombra ASB (2003) J Mater Sci 38:3713. doi:10.1023/A:1025963728858

    Article  CAS  Google Scholar 

  8. Silva CC, Rocha HHB, Freire FNA, Santos MRP, Saboia KDA, Goes JC, Sombra ASB (2005) Mater Chem Phys 92:260

    Article  CAS  Google Scholar 

  9. El Mhammedi MA, Achak M, Najih R, Bakasse M, Chtaini A (2009) Mater Chem Phys 115:567

    Article  Google Scholar 

  10. Mahabole MP, Aiyer RC, Ramakrishna CV, Sreedhar B, Khairnar RS (2005) Bull Mater Sci 28:535

    Article  CAS  Google Scholar 

  11. Ohtsuki C, Ichikawa Y, Shibata H, Kawachi G, Torimoto T, Ogata S (2010) J Mater Sci Mater Med 21:1225

    Article  CAS  Google Scholar 

  12. Owada H, Yamashita K, Umegaki T, Kanazawa T, Nagai M (1989) Solid State Ion 35:401

    Article  CAS  Google Scholar 

  13. Hench LL (1991) J Am Ceram Soc 74:1487

    Article  CAS  Google Scholar 

  14. Burg KJL, Porter S, Kellam JF (2000) Biomaterials 21:2347

    Article  CAS  Google Scholar 

  15. Karageorgiou V, Kaplan D (2005) Biomaterials 26:5474

    Article  CAS  Google Scholar 

  16. Martin HC, Carey GF (1973) Introduction to finite element analysis. McGraw-Hill, New York

    Google Scholar 

  17. Smith DT, Wei L (1995) J Am Ceram Soc 78:1301

    Article  CAS  Google Scholar 

  18. Perera FH, Martinez-Vazquez FJ, Miranda P, Ortiz AL, Pajares A (2010) Ceram Int 36:1929

    Article  CAS  Google Scholar 

  19. Chotard T, Soro J, Lemercier H, Huger M, Gault C (2008) J Eur Ceram Soc 28:2129

    Article  CAS  Google Scholar 

  20. Patapy C, Gault C, Huger M, Chotard T (2009) J Eur Ceram Soc 29:3355

    Article  CAS  Google Scholar 

  21. Yousef SG, Rodel J, Fuller ER Jr, Zimmermann A, El-Dasher BS (2005) J Am Ceram Soc 88:2809

    Article  CAS  Google Scholar 

  22. Case ED, Glinka C (1984) J Mater Sci 19:2962. doi:10.1007/BF01026974

    Article  CAS  Google Scholar 

  23. Wang J, Shaw LL (2009) Biomaterials 30:6565

    Article  CAS  Google Scholar 

  24. Rokhlin SI, Chu YC, Hefetz M (1993) Ceram Eng Sci Proc 14:454

    Article  CAS  Google Scholar 

  25. Diaz LA, Torrecillas R, Simonin F, Fantozzi G (2008) J Eur Ceram Soc 28:2853

    Article  CAS  Google Scholar 

  26. Evans AG, Fu Y (1986) In: Evans AG (ed) Ceramic containing systems. Noyes Press, Park Ridge

    Google Scholar 

  27. Kratschmer T, Aneziris CG (2011) Int J Appl Ceram Technol 8:398

    Article  CAS  Google Scholar 

  28. Hubner H, Jillek W (1977) J Mater Sci 12:117. doi:10.1007/BF00738476

    Article  Google Scholar 

  29. Meschke F, Kolleck A, Schneider GA (1997) J Eur Ceram Soc 17:1143

    Article  CAS  Google Scholar 

  30. Ota T, Yamai I, Takahashi J (1986) Adv Ceram Mater 1:371

    CAS  Google Scholar 

  31. Hilpert T, Ivers-Tiffee E (2004) Solid State Ion 175:471

    Article  CAS  Google Scholar 

  32. Hasselman DPH (1993) J Am Ceram Soc 76:2180

    Article  CAS  Google Scholar 

  33. Deroo F, Kim JY (2010) J Acoust Soc Am 127:3315

    Article  Google Scholar 

  34. Kimura T, Miyamoto S, Yamaguchi T (1990) J Am Ceram Soc 73:127

    Article  CAS  Google Scholar 

  35. Morito K, Suzuki T (2005) J Appl Phys 97:104

    Article  Google Scholar 

  36. Rice RW (2002) J Eur Ceram Soc 22:1411

    Article  CAS  Google Scholar 

  37. Lee SK, Moretti JD, Readey MJ (2002) J Am Ceram Soc 85:279

    Article  CAS  Google Scholar 

  38. Collin M, Rowcliffe D (2002) J Eur Ceram Soc 22:435

    Article  CAS  Google Scholar 

  39. Wilson BA, Case ED (1997) J Mater Sci 32:3163. doi:10.1023/A:1018698600884

    Article  CAS  Google Scholar 

  40. Wilson BA, Case ED (1999) J Mater Sci 34:247. doi:10.1023/A:1004484901369

    Article  CAS  Google Scholar 

  41. Wilson BA, Lee KY, Case ED (1997) Mater Res Bull 32:1607

    Article  CAS  Google Scholar 

  42. Kese KO, Li ZC, Bergman B (2006) J Eur Ceram Soc 26:1013

    Article  CAS  Google Scholar 

  43. Braun LM, Bennison SJ, Lawn BR (1992) J Am Ceram Soc 75:3049

    Article  CAS  Google Scholar 

  44. Salomonson J, Zeng K, Rowcliffe D (1996) Acta Mater 44:543

    Article  CAS  Google Scholar 

  45. Kim JW, Bhowmick S, Hermann I, Lawn BR (2006) J Biomed Mater Res B 79:58

    Google Scholar 

  46. Budiansky B, O’Connell RJ (1976) Int J Solids Str 12:81

    Article  Google Scholar 

  47. Salganik RL (1974) Mech Solids 8:135

    Google Scholar 

  48. Hoenig A (1979) Int J Solids Str 15:137

    Article  Google Scholar 

  49. Laws N, Brockenbrough JR (1987) Int J Solids Str 23:1247

    Article  Google Scholar 

  50. Hasselman DPH, Singh JP (1979) Am Ceram Soc Bull 58:856

    CAS  Google Scholar 

  51. Walsh JB (1965) J Geophys Res 70:5249

    Article  Google Scholar 

  52. Case ED (1984) J Mater Sci 19:3702. doi:10.1007/BF02396943

    Article  CAS  Google Scholar 

  53. Case ED, Kim Y (1993) J Mater Sci 28:1885. doi:10.1007/BF00595762

    Article  Google Scholar 

  54. Kim Y, Case ED (1993) J Mater Sci 28:1901. doi:10.1007/BF00595763

    Article  Google Scholar 

  55. Dorre E, Hubner H (1984) Alumina: processing, properties, and applications. Springer, Berlin

    Google Scholar 

  56. Case ED, Smyth JR, Monthei V (1981) J Am Ceram Soc 64:C24

    Article  Google Scholar 

  57. Migliori A, Sarrao JL (1997) Resonant ultrasound spectroscopy applications to physics, materials measurements and nondestructive evaluation. Wiley-Interscience, Hoboken

    Google Scholar 

  58. Ren F, Case ED, Morrison A, Tafesse M, Baumann MJ (2009) Philos Mag 89:1163

    Article  CAS  Google Scholar 

  59. Schmidt RD, Ni JE, Case ED, Sakamoto JS, Kleinow DC, Wing BL, Stewart RC, Timm EJ (2010) J Alloy Compd 504:303

    Article  CAS  Google Scholar 

  60. Ni JE, Case ED, Khabir KN, Stewart RC, Wu CI, Hogan TP, Timm EJ, Girard SN, Kanatzidis MG (2010) Mater Sci Eng B 170:58

    Article  CAS  Google Scholar 

  61. Zhang L, Rogl G, Grytsiv A, Puchegger S, Koppensteiner J, Spieckermann F, Kabelka H, Reinecker M, Rogl P, Schranz W, Zehetbauer M, Carpenter MA (2010) Mater Sci Eng B 170:26

    Article  CAS  Google Scholar 

  62. Gladden JR, Li G, Adebisi R, Firdosy S, Caillat T, Ravi V (2010) Phys Rev B 82:045209

    Article  Google Scholar 

  63. Ni JE, Ren F, Case ED, Timm EJ (2009) Mater Chem Phys 118:459

    Article  CAS  Google Scholar 

  64. Zhang Z, Keppens V, Senkov ON, Miracle DB (2007) Mater Sci Eng A 471:151

    Article  Google Scholar 

  65. Wachtman JB, Cannon WR, Matthewson MJ (2009) Mechanical properties of ceramics, 2nd edn. Wiley, New York

    Book  Google Scholar 

  66. Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:533

    Article  CAS  Google Scholar 

  67. Spriggs RM (1961) J Am Ceram Soc 44:628

    Article  CAS  Google Scholar 

  68. Liu DM (1998) Ceram Int 24:441

    Article  CAS  Google Scholar 

  69. Arita IH, Castano VM, Wilkinson DS (1995) J Mater Sci Mater Med 6:19

    Article  CAS  Google Scholar 

  70. He LH, Standard OC, Huanga TTY, Latella BA, Swain MV (2008) Acta Biomater 4:577

    Article  CAS  Google Scholar 

  71. Landolt H, Bornstein R (1979) Elektrische, Piezoelektrische, Pyroelektrische, Piezooptische, Elektrooptische Konstanten und Nichtlineare Dielektrische Suszeptibilitaten, Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Gruppe III, Bd. 11. Springer, Berlin

    Google Scholar 

  72. Hoepfner TP, Case ED (2004) Mater Lett 58:489

    Article  CAS  Google Scholar 

  73. Dey A, Mukhopadhyay AK (2011) Int J Appl Ceram Technol 8:572

    Article  CAS  Google Scholar 

  74. Wang Q, Ji SC (2009) J Geophys Res-Earth 114:B09202

    Article  Google Scholar 

  75. Rice RW (1998) Porosity of ceramics. Marcel Dekker, Inc., New York

    Google Scholar 

  76. Jang BK, Matsubara H (2005) Mater Lett 59:3462

    Article  CAS  Google Scholar 

  77. Ren F, Case ED, Timm EJ, Schock HJ (2007) Philos Mag 87:4907

    Article  CAS  Google Scholar 

  78. Krstic Z, Krstic VD (2008) J Eur Ceram Soc 28:1723

    Article  CAS  Google Scholar 

  79. Ren F, Case ED, Ni JE, Timm EJ, Lara-Curzio E, Trejo RM, Lin CH, Kanatzidis MG (2009) Philos Mag 89:143

    Article  CAS  Google Scholar 

  80. Zhou J, Li Z, Zhu R, Li Y, Zhang Z (2008) J Mater Process Technol 197:325

    Article  CAS  Google Scholar 

  81. Dole SL, Hunter O Jr, Calderwood FW, Bray DJ (1978) J Am Ceram Soc 61:486

    Article  CAS  Google Scholar 

  82. Case ED, Smyth JR, Hunter O Jr (1981) J Nucl Mater 102:135

    Article  CAS  Google Scholar 

  83. Manning WR, Hunter O Jr (1973) J Am Ceram Soc 56:602

    CAS  Google Scholar 

  84. Suchomel RR, Hunter O Jr (1976) J Am Ceram Soc 59:149

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Science Foundation, Division of Materials Research Grant DMR-0706449. Also, the purchase of the Resonant Ultrasound Spectroscopy apparatus was funded by the Defense University Research Instrumentation Program (DURIP) Grant No. N00014-07-1-0735.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Case.

Appendices

Appendix 1

Equations to calculate S N [the product of a crack orientation and a crack geometry parameter in Eq. (9)], for each modulus/microcrack model with a particular crack geometry employed in this study.

In the ROM model [53], the overall modulus was taken as the sum modulus of the undamaged layer and the damaged layer. The strain in the undamaged layer was set equal to the strain in the damaged layer. In the DBV model [53], the Bernoulli–Euler beam equation was applied with the boundary conditions that both the bending moments and the shear force were zero at the beam ends.

In the ROM model [53], S N [Eq. (9)] was calculated using Eq. (12)

$$ S_{N} = f \cdot \frac{{2\langle A^{2} \rangle }}{\pi \langle P\rangle }. $$
(12)

In the DBV model [53], S N was expressed as Eq. (13)

$$ S_{N} = \frac{{r^{2} + 3}}{{(r + 1)^{2} }} \cdot f \cdot \frac{{2\langle A^{2} \rangle }}{\pi \langle P\rangle }. $$
(13)

In both the Eqs. (12) and (13), f is the microcrack orientation parameter, 〈A 2〉 is the mean of the square of the crack surface area and 〈P〉 is the mean crack perimeter. In Eq. (13), r is the ratio between the half the crack length and the specimen thickness [53].

Equations to calculate S N for different crack geometries in the ROM model are summarized in Eqs. (14)–(17).

ROM model with unmodified slit crack geometry

$$ S_{N} = \frac{{\pi^{2} (1 - u_{0}^{2} )}}{2}\frac{{2(2c^{2} )^{2} }}{4\pi c} $$
(14)

ROM model with modified slit crack geometry

$$ S_{N} = \frac{{\pi^{2} (1 - u_{0}^{2} )}}{2}\frac{{2(2c^{2} - \pi a^{2} /2)^{2} }}{\pi (4c + \pi a)} $$
(15)

ROM model with unmodified half ellipse crack geometry

$$ S_{N} = \frac{{16(1 - u_{0}^{2} )}}{3}\frac{{2(\pi c^{2} /2)^{2} }}{{\pi^{2} c}} $$
(16)

ROM model with modified half ellipse crack geometry

$$ S_{N} = \frac{{16(1 - u_{0}^{2} )}}{3}\frac{{2(\pi c^{2} /2 - \pi a^{2} /2)^{2} }}{\pi (\pi c + \pi a)} $$
(17)

The value of S N for DBV model is calculated via multiplying each corresponding S N value for ROM model by \( \frac{{r^{2} + 3}}{{(r + 1)^{2} }}, \) where r is the ratio between the half the crack length and the specimen thickness.

Appendix 2

Equations used to predict the slopes, S p, of the ΔE/E 0 versus ε plots for HA specimens in this study and alumina [1].

The relative change in Young’s modulus, ΔE/E 0 in DBV model [from Eqs. (11) and (28) in Case’s article [53]) is given by

$$ \Updelta E/E_{0} = \frac{{r^{2} + 3}}{{(r + 1)^{2} }}\frac{r}{r + 1} f\,G\,N_{\text{l}} , $$
(18)

where f is the microcrack orientation parameter, for aligned microcracks in penny, half penny, ellipse, and half ellipse crack shapes (from Table II in Kim and Case’s article [54]), f is defined as

$$ f = 1 6( 1- u_{0}^{ 2} )/ 3 $$
(19)

for aligned slit crack shapes (from Table II in Kim and Case’s article [54])

$$ f = \pi^{ 2} ( 1- u_{0}^{ 2} )/ 2. $$
(20)

G is the geometry parameter [from Eq. (4) in Kim and Case’s article [54]]

$$ G = \frac{{ 2\langle {\text{A}}^{ 2} \rangle }}{{\pi \langle {\text{P}}\rangle }}. $$
(21)

For DBV model with modified half ellipse crack geometry (from Table II in Kim and Case’s article [54])

$$ G = \frac{{(a + c)(c - a)^{2} }}{2}. $$
(22)

For the DBV model with a modified slit crack geometry (from Table II in Kim and Case [54])

$$ G = \frac{{2(4c^{4} - 2\pi a^{2} c^{2} + \pi^{2} a^{4} /4)}}{{4\pi c + \pi^{2} a}}. $$
(23)

N l is the microcrack number density in the microcracked surface layer.

N l is the number of microcracks/(specimen length × specimen width × depth of the microcrack-damaged layer), r is the depth of the microcracked layer/depth of the unmicrocracked layer.

In the plot of ΔE/E 0 versus ε for HA specimens in this study and alumina specimens [1], ε is defined as GN l. The theoretically predicted slope, S p of ΔE/E 0 versus ε is expressed as

$$ S_{\text{p}} = \frac{{r^{2} + 3}}{{(r + 1)^{2} }}\frac{r}{r + 1}f. $$
(24)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, X., Case, E.D. & Baumann, M.J. The effect of indentation-induced microcracks on the elastic modulus of hydroxyapatite. J Mater Sci 47, 6333–6345 (2012). https://doi.org/10.1007/s10853-012-6556-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6556-2

Keywords

Navigation