Skip to main content
Log in

Yield stress of SiC reinforced aluminum alloy composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article develops a constitutive model for the yield stress of SiC reinforced aluminum alloy composites based on the modified shear lag model, Eshelby’s equivalent inclusion approach, and Weibull statistics. The SiC particle debonding and cracking during deformation have been incorporated into the model. It has been shown that the yield stress of the composites increases as the volume fraction and aspect ratio of the SiC particles increase, while it decreases as the size of the SiC particles increases. Four types of aluminum alloys, including pure aluminum, Al–Mg–Si alloy, Al–Cu–Mg alloy, and Al–Zn–Mg alloy, have been chosen as the matrix materials to verify the model accuracy. The comparisons between the model predictions and the experimental counterparts indicate that the present model predictions agree much better with the experimental data than the traditional modified shear lag model predictions. The present model indicates that particle failure has important effect on the yield stress of the SiC reinforced aluminum alloy composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cox HL (1952) Br J Appl Phys 3:72

    Article  ADS  Google Scholar 

  2. Kelly A (1973) Strong solids. Clarendon Press, Oxford, p 147

    Google Scholar 

  3. Nardone VC (1987) Scr Metall 21:1313

    Article  CAS  Google Scholar 

  4. Nardone VC, Prewo KM (1986) Scr Metall 20:43

    Article  CAS  Google Scholar 

  5. Taya M, Arsenault RJ (1987) Scr Metall 21:349

    Article  CAS  Google Scholar 

  6. Arsenault RJ, Fisher RM (1983) Scr Metall 17:67

    Article  CAS  Google Scholar 

  7. Arsenault RJ, Shi N (1986) Mater Sci Eng 81:175

    Article  CAS  Google Scholar 

  8. Miller WS, Humphreys FJ (1991) Scr Metall Mater 25:33

    Article  CAS  Google Scholar 

  9. González C, Llora J (1996) Scr Mater 35:91

    Article  Google Scholar 

  10. Lewis CA, Withers PJ (1995) Acta Metall Mater 43:3685

    Article  CAS  Google Scholar 

  11. Llorca J (1995) Acta Metall Mater 43:181

    CAS  Google Scholar 

  12. Maire E, Wilkinson DS, Embury JD, Fougeres R (1997) Acta Mater 45:5261

    Article  CAS  Google Scholar 

  13. Withers PJ, Stobbs WM, Pedersen OB (1989) Acta Metall 37:3061

    Article  CAS  Google Scholar 

  14. McElro TJ, Szkopiak ZC (1972) Inter Metall Rev 17:175

    Google Scholar 

  15. Sekine H, Chen R (1995) Composites 26:183

    Article  CAS  Google Scholar 

  16. Ashby MF (1970) Philos Mag 21:399

    Article  CAS  ADS  Google Scholar 

  17. Liews CA, Stobbs WM, Withers PJ (1993) Mater Sci Eng A 171:1

    Article  Google Scholar 

  18. Tohgo K, Weng GJ (1994) Trans ASME J Eng Mater Technol 116:414

    Article  Google Scholar 

  19. Lee HK (2001) Comp Mech 27:504

    Article  MATH  ADS  Google Scholar 

  20. Shimbo M, Naka M, Okamoto I (1989) J Mater Sci Lett 8:663

    Article  CAS  Google Scholar 

  21. Brown LM, Clarke DR (1975) Acta Metall 23:821

    Article  CAS  Google Scholar 

  22. Song M, Li X, Chen KH (2007) Metall Mater Trans A 38:638

    Article  Google Scholar 

  23. Hong S, Kim H, Huh D, Suryanarayana C, Chun BS (2003) Mater Sci Eng A 347:198

    Article  Google Scholar 

  24. Arsenault RJ, Wang L, Feng CR (1991) Acta Metall Mater 39:47

    Article  CAS  Google Scholar 

  25. Dutta I, Bourell DL (1989) Mater Sci Eng A 112:67

    Article  Google Scholar 

  26. Nieh TG, Karlak RF (1984) Scr Metall 18:25

    Article  CAS  Google Scholar 

  27. Papazian JM (1988) Metall Trans A 19:2945

    Article  Google Scholar 

  28. Varma VK, Mahajan YR, Kutumnarao VV (1997) Scr Mater 37:485

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (50801068), PhD Programs Foundation of Ministry of Education of China (200805331044), and Hunan Postdoctoral Scientific Program (2008RS4020). One of the authors would also like to thank the support from Chinese Postdoctoral Science Foundation (200801345, 20070410303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, M., He, Y. & Fang, S. Yield stress of SiC reinforced aluminum alloy composites. J Mater Sci 45, 4097–4110 (2010). https://doi.org/10.1007/s10853-010-4498-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4498-0

Keywords

Navigation