Skip to main content
Log in

Microstructural studies on nanocrystalline oxide dispersion strengthened austenitic (Fe–18Cr–8Ni–2W–0.25Y2O3) alloy synthesized by high energy ball milling and vacuum hot pressing

  • Ultrafine Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, nanostructured (Fe–18Cr–8Ni–2W) austenitic base and oxide dispersion strengthened (ODS) alloy powders were produced through mechanical alloying and these nano powders were consolidated by vacuum hot pressing. The results showed that initially bcc solid solution formed in both the alloys and this transformed to fcc with continued milling. The bcc solid solution formation and the subsequent transformation to fcc were significantly faster in the ODS alloys when compared to the base alloy. In the ODS alloy, a grain size of ~25 nm is achieved within 5 h of milling. Study of variation of microhardness of mechanically alloyed powder particles with grain size showed linear Hall–Petch kind of behavior. Following vacuum hot pressing of mechanically alloyed powders, nearly fully dense (>99% of theoretical density) compacts were obtained with a grain size of ~80 nm. The bulk hardness of base and ODS alloys are ~530 and ~900 HV, respectively. These are significantly higher than the values reported in the literature so far. The enhanced strength the ODS alloy is due to increased dislocation density and presence of fine dispersoids along with the nanocrystalline grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Klueh RL, Ehrlich K, Abe F (1992) J Nucl Mater 191–194:116

    Google Scholar 

  2. Ukai S, Harada M, Nomura S, Shikakura S (1992) In: International symposium material chemistry in nuclear environment, Tsukuba, Japan, p 347

  3. Alamo A, Lambard V, Averty X, Mathon MH (2004) J Nucl Mater 329–333:333

    Article  Google Scholar 

  4. Kazimierzak B, Prignon JM, Fromont RI (1992) Mater Des 13(2):67

    CAS  Google Scholar 

  5. Arzt E, Behr R, Gohring E, Grahle P, Mason RP (1997) Mater Sci Eng A 234–236:22

    Google Scholar 

  6. Estrin Y, Heilmaier M, Dew G (1999) Mater Sci Eng A 272:163

    Article  Google Scholar 

  7. Schneibel JH, Liu CT, Miller MK, Mills MJ, Sarosi P, Heilmaier M, Sturm D (2009) Scr Mater 61:793

    Article  CAS  Google Scholar 

  8. Benjamin JS (1970) Metall Trans A 1:2943

    CAS  ADS  Google Scholar 

  9. Kaloshkin SD, Tcherdyntsev VV, Tomlin IA, Baldokhin YV, Shelekhov EV (2001) Physica B 299:236

    Article  CAS  ADS  Google Scholar 

  10. Kuhrt C, Schultz L (1993) J Appl Phys 73:1975

    Article  CAS  ADS  Google Scholar 

  11. Gheisari K, Javadpou S, Oh JT (2009) J Phys Conf Ser 153:012051

    Article  ADS  Google Scholar 

  12. Enayati MH, Bafandeh MR (2008) J Alloy Compd 454:228

    Article  CAS  Google Scholar 

  13. Phaniraj MP, Kim D-I, Shim J-H, Cho YW (2009) Acta Mater 57:1856

    Article  CAS  Google Scholar 

  14. Du SW, Ramanujan RV (2005) J Magn Magn Mater 292:286

    Article  CAS  ADS  Google Scholar 

  15. Keijser TH, Langford JI, Mittemeijer EJ, Vogels ABP (1982) J Appl Crystallogr 15:308

    Article  Google Scholar 

  16. Han JH, Kim DY (1995) Acta Metall Mater 43(8):3185

    Article  CAS  MathSciNet  Google Scholar 

  17. Fujiwara H, Ameyama K (1999) Mater Sci Forum 304–306:47

    Article  Google Scholar 

  18. Srinivasan D, Corderman R, Subramanian PR (2006) Mater Sci Eng A 461:211

    Google Scholar 

  19. Munoz-Morris MA, Garcia Oca C, Morris DG (2002) Acta Mater 50:2825

    Article  CAS  Google Scholar 

  20. Lacy CE, Gensamer M (1944) Trans Am Soc Met 32:88

    Google Scholar 

  21. Li Q (2003) Mater Sci Eng A 361:355

    Google Scholar 

  22. Rajasekhara S, Ferreira PJ, Karjalainen LP, Kyrolainen A (2007) Metall Mater Trans A 38A:1202

    Article  CAS  ADS  Google Scholar 

  23. Taylor GI (1934) Proc R Soc A 145:362

    Article  CAS  ADS  Google Scholar 

  24. Cao B, Joshi SP, Ramesh KT (2009) Scr Mater 60:619

    Article  CAS  Google Scholar 

  25. Gottstein G (2004) Physical foundations of materials science. Springer, New York

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the DST-DAAD for the financial support (DST-DAAD Project No. INT/DAAD/P-172/2007). One of the authors (VSS) acknowledges the financial support of Indo-US Science and Technology Forum (IUSSTF) through a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Subramanya Sarma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Susila, P., Sturm, D., Heilmaier, M. et al. Microstructural studies on nanocrystalline oxide dispersion strengthened austenitic (Fe–18Cr–8Ni–2W–0.25Y2O3) alloy synthesized by high energy ball milling and vacuum hot pressing. J Mater Sci 45, 4858–4865 (2010). https://doi.org/10.1007/s10853-010-4264-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4264-3

Keywords

Navigation