Skip to main content
Log in

A continuum model for remodeling in living structures

  • Nano- and micromechanical properties of hierarchical biological materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new remodeling theory accounting for mechanically driven collagen fiber reorientation in cardiovascular tissues is proposed. The constitutive equations for the living tissues are motivated by phenomenologically based microstructural considerations on the collagen fiber level. Homogenization from this molecular microscale to the macroscale of the cardiovascular tissue is performed via the concept of chain network models. In contrast to purely invariant-based macroscopic approaches, the present approach is thus governed by a limited set of physically motivated material parameters. Its particular feature is the underlying orthotropic unit cell which inherently incorporates transverse isotropy and standard isotropy as special cases. To account for mechanically induced remodeling, the unit cell dimensions are postulated to change gradually in response to mechanical loading. From an algorithmic point of view, rather than updating vector-valued microstructural directions, as in previously suggested models, we update the scalar-valued dimensions of this orthotropic unit cell with respect to the positive eigenvalues of a tensorial driving force. This update is straightforward, experiences no singularities and leads to a stable and robust remodeling algorithm. Embedded in a finite element framework, the algorithm is applied to simulate the uniaxial loading of a cylindrical tendon and the complex multiaxial loading situation in a model artery. After investigating different material and spatial stress and strain measures as potential driving forces, we conclude that the Cauchy stress, i.e., the true stress acting on the deformed configuration, seems to be a reasonable candidate to drive the remodeling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science Taylor Francis Group, New York

    Google Scholar 

  2. Arruda EM, Boyce MC (1993) J Mech Phys Solids 41:389

    Article  CAS  Google Scholar 

  3. Bischoff JE, Arruda EM, Grosh K (2002) J Appl Mech 69:570

    Article  CAS  Google Scholar 

  4. Bischoff JE, Arruda EM, Grosh K (2002) J Appl Mech 69:198

    Article  CAS  Google Scholar 

  5. Boyce MC (1996) Rubber Chem Technol 69:781

    CAS  Google Scholar 

  6. Boyce MC, Arruda EM (2000) Rubber Chem Technol 73:504

    CAS  Google Scholar 

  7. Bustamante C, Bryant Z, Smith SB (2003) Nature 421:423

    Article  CAS  Google Scholar 

  8. Bustamante C, Smith S, Marko JF, Siggia ED (1994) Science 265:1599

    Article  CAS  Google Scholar 

  9. Cowin SC (1984) Calc Tissue Int 36:S99

    Google Scholar 

  10. Cowin SC (1995) J Elast 34:45

    Article  Google Scholar 

  11. Driessen NJB, Bouten CVC, Baaijens FPT (2005) J Biomech Eng 127:494

    Article  Google Scholar 

  12. Driessen NJB, Peters GWM, Huyghe JM, Bouten CVC, Baaijens FPT (2003) J Biomech 36:1151

    Article  CAS  Google Scholar 

  13. Driessen NJB, Wilson W, Bouten CVC, Baaijens FPT (2004) J Theor Biol 36:53

    Article  CAS  Google Scholar 

  14. Elbischger PJ, Bischof H, Holzapfel GA, Regitnig P (2005) In: Suri JS, Yuan C, Wilson DL, Laxminarayan S (eds) Plaque imaging: pixel to molecular level, vol 113. Studies in Health Technology and Informatics, IOS Press, p 97

  15. Elbischger PJ, Bischof H, Regitnig P, Holzapfel GA (2004) Pattern Anal Appl 7:269

    Google Scholar 

  16. Finlay HM, Mc Cullough L, Canham PB (1995) J Vasc Res 32:301

    CAS  Google Scholar 

  17. Flory PJ (1969) Statistical mechanics of chain molecules. John Wiley Sons, Chichester–New York

    Google Scholar 

  18. Freed AD, Einstein DR, Vesely I (2005) Biomech Model Mechanobiol 4:100

    Article  Google Scholar 

  19. Garikipati K, Arruda EM, Grosh K, Narayanan H, Calve S (2004) J Mech Phys Solids 52:1595

    Article  Google Scholar 

  20. Garikipati K, Olberding JE, Narayanan H, Arruda EM, Grosh K, Calve S (2006) J Mech Phys Solids 54:1493

    Article  CAS  Google Scholar 

  21. Gasser TC, Ogden RW, Holzapfel GA (2006) J R Soc Interface 3:15

    Article  Google Scholar 

  22. Gleason RL, Humphrey JD (2004) J Vasc Res 41:352

    Article  CAS  Google Scholar 

  23. Gleason RL, Humphrey JD (2005) Math Med Biol 22:347

    Article  Google Scholar 

  24. Hagerman PJ (1988) Annu Rev Biophys Biophys Chem 17:265

    Article  CAS  Google Scholar 

  25. Hariton I, de Botton G, Gasser TC, Holzapfel GA (2006) Biomechanics and modeling in mechanobiology, pp available online, DOI 10.1007/s10237-006-0049-7

  26. Himpel G, Menzel A, Kuhl E, Steinmann P (2007) Int J Num Meth Eng, in press

  27. Holzapfel GA, Gasser TC, Stadler M (2002) European J Mech A Solids 21:441

    Article  Google Scholar 

  28. Holzapfel GA, Ogden RW (2003) Biomechanics of soft tissue in cardiovascular systems CISM courses and lectures no 441. Springer Verlag, Wien–New York

    Google Scholar 

  29. Holzapfel GA, Ogden RW (2006) mechanics of biological tissue. Springer, Berlin–Heidelberg–New York

    Google Scholar 

  30. Holzapfel GA, Stadler M, Schulze-Bauer CAJ (2002) Ann Biomed Eng 30:753

    Article  Google Scholar 

  31. Huang H, Kamm R, Lee RT (2003) Am J Physiol Cell Physiol 287:C1

    Article  Google Scholar 

  32. Humphrey JD (2001) J Biomech Eng 123:638

    Article  CAS  Google Scholar 

  33. Humphrey JD (2002) Cardiovasular solid mechanics. Springer Verlag, Berlin–Heidelberg–New York

    Google Scholar 

  34. Ingber DE (2003) Ann Intern Med 35:564

    Google Scholar 

  35. Klein-Nulend J, Bacabac RG, Mullender MG (2005) Pathol Biol (Paris) 53:576

    CAS  Google Scholar 

  36. Kratky O, Porod G (1949) Recl Trav Chim 68:1106

    CAS  Google Scholar 

  37. Kuhl E, Garikipati K, Arruda EM, Grosh K (2005) J Mech Phys Solids 53:1552

    Article  CAS  Google Scholar 

  38. Kuhl E, Maas R, Himpel G, Menzel A (2006) Biomechanics and modeling in mechanobiology, pp available online, DOI 10.1007/s10237-006-0062-x

  39. Kuhl E, Menzel A, Garikipati K (2006) Phil Mag 86:3241

    Article  CAS  Google Scholar 

  40. Lehoux S, Castier Y, Tedgui A (2006) J Intern Med 259:381

    Article  CAS  Google Scholar 

  41. Leung DYM, Glagov S, Mathews MB (1976) Science 191:475

    Article  CAS  Google Scholar 

  42. Leung DYM, Glagov S, Mathews MB (1977) Circ Res 41:316

    CAS  Google Scholar 

  43. Lubarda VA, Hoger A (2002) Int J Solids Struct 39:4627

    Article  Google Scholar 

  44. Marko JF, Siggia ED (1995) Macromolecules 28:8759

    Article  CAS  Google Scholar 

  45. Menzel A (2006) In: Holzapfel GA, Ogden RW (eds) IUTAM Symposium mechanics of biological tissue. Springer Verlag, p 91

  46. Menzel A (2005) Biomech Model Mechanobiol 3:147

    Article  CAS  Google Scholar 

  47. Mofrad MRK, Kamm R (eds) (2006) Cytoskeletal mechanics models and measurements. Cambridge University Press

  48. Nerem RM, Seliktar D (2001) Annu Rev Biomed Eng 3:225

    Article  CAS  Google Scholar 

  49. Rodriguez EK, Hoger A, Mc Culloch AD (1994) J Biomech 27:455

    Article  CAS  Google Scholar 

  50. Stopak D, Harris AK (1982) Dev Biol 90:383

    Article  CAS  Google Scholar 

  51. Sun YL, Luo ZP, Fertala A, An KN (2002) Biochem Biophys Res Commun 295:382

    Article  CAS  Google Scholar 

  52. Taber LA, Humphrey JD (2001) J Biomech Eng 123:528

    Article  CAS  Google Scholar 

  53. Treloar LRG (1975) The physics of rubber elasticity. Clarendon Press, Oxford

    Google Scholar 

  54. Vianello M (1996) J Elast 42:283

    Article  Google Scholar 

  55. Wang JH, Thampatty BP (2006) Biomech Model Mechanobio 5:1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Kuhl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhl, E., Holzapfel, G.A. A continuum model for remodeling in living structures. J Mater Sci 42, 8811–8823 (2007). https://doi.org/10.1007/s10853-007-1917-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1917-y

Keywords

Navigation