Skip to main content
Log in

A study on the synthesis and characterisation of nanocrystalline transition metal oxynitrides

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A different processing route to bimetallic oxynitrides has been developed using oxide precursors generated from coprecipitation of ethanolic solutions of the relevant metal chlorides. The nitridation of the mixed-metal precursors yields nanocrystalline oxynitrides. Representative group 5–group 6 transition metal oxynitrides, M1−xM′x(O,N) (M = Nb, Ta; M′ = Mo, W) have been prepared and characterised by powder X-ray diffraction (PXD), scanning electron microscopy with energy dispersive analysis by X-rays (SEM/EDAX), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), BET surface area measurements and SQUID magnetometry. The mixed-metal oxynitrides form rock salt structures (a ∼4.3 Å) with disordered distributions of both cations and anions. The purity, particle size and surface area of materials are significantly dependent on nitridation temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Disalvo FJ (1990) Science 247:649

    Article  CAS  Google Scholar 

  2. Kerlau M, Merdrignac-Conanec O, Reichel P, Barsan N, Weimar U (2006) Sens Actuators B Chem 115:4

    Article  CAS  Google Scholar 

  3. Florea M, Silvy RP, Grange P (2003) Appl Catal A Gen 255:289

    Article  CAS  Google Scholar 

  4. Jansen M, Letschert HP (2000) Nature 404:980

    Article  CAS  Google Scholar 

  5. Fabregas RP, Marin JI, Cascales C, Puche RS (2007) J Solid State Chem 180:92

    Article  Google Scholar 

  6. Gajbhiye NS, Ningthoujam RS (2006) Mater Res Bull 41:1612

    Article  CAS  Google Scholar 

  7. Schottenfeld JA, Benesi AJ, Stephens PW, Chen G, Eklund PC, Mallouk TE (2005) J Solid State Chem 178:2313

    Article  CAS  Google Scholar 

  8. Gregory DH (1999) J Chem Soc Dalton Trans 259

  9. Delasarte S, Florea M, Mauge F, Grange P (2006) Catal Today 116:216

    Article  Google Scholar 

  10. See for example: Yashima M, Maeda K, Teramura K, Takata T, Domem K, Chem Phys Lett 416 (2005) 225; Centeno MA, Paulis M, Montes M, Odriozola JA, Appl Catal B 61 (2005) 177; Florae M, Silvy RP, Grange P, Appl Catal A 286 (2005) 1

  11. Maeda K, Teramura K, Saito N, Inoue Y, Domen K (2006) J Catal 243:303

    Article  CAS  Google Scholar 

  12. Mientus R, Grotschel R, Ellmer K (2005) Surf Coat Technol 200:341

    Article  CAS  Google Scholar 

  13. Iriyama Y, Kako T, Yada C, Abe T, Ogumi Z (2005) J Power Sour 146:745

    Article  CAS  Google Scholar 

  14. Marco De Lucas MC, Fabriguette F, Linsavanh M, Imhoff L, Heintz O, Josse-Courty C, Mesnier MT, Potin V, Bourgeois S, Sacilotti M (2004) J Cryst Growth 261:324

  15. Wong CK, Wong H, Chan M, Kok CW, Chan HP (2006) Microelectron Reliab 46:2056

    Article  CAS  Google Scholar 

  16. Jung WS (2006) Mater Lett 60:2954

    Article  CAS  Google Scholar 

  17. Delasarte S, Grange P (2004) Appl Catal A: 259:269

    Google Scholar 

  18. Nowak I, Ziolek M (2006) Catal Today 118:410

    Article  CAS  Google Scholar 

  19. Li Y, Gao L (2003) Mater Lett 57:1062

    Article  CAS  Google Scholar 

  20. Matylistskaya VA, Bock W, Thoma K, Kolbesen BO (2005) Appl Surf Sci 252:205

    Article  Google Scholar 

  21. de Graaf D, Hintzen HT, de With G, Ramanujachary KV, lanci C, Lofland SE (2004) Solid State Commun 131:693

    Article  Google Scholar 

  22. Katsumata T, Takaki S, Inaguma Y, Shan YJ (2004) Solid State Commun 132:583

    Article  CAS  Google Scholar 

  23. Casadei F, Pileggi R, Valle R, Matthews A, Surf Coat Technol 201 (2006) 1200; Himri AE, Sapiña F, Ibañez R, Beltrán A, J Mater Chem 11 (2001) 2311

  24. Boultif A, Louer D (1991) J Appl Cryst 24:987

    Article  CAS  Google Scholar 

  25. Nolze G, Kraus W (1998) Powder Diffract 13:256

    Google Scholar 

  26. Ruth K, Kieffer R, Burch R (1998) J Catal 175:16

    Article  CAS  Google Scholar 

  27. Botella P, López Nieto JM, Solsona B, Mifsud A, Márquez F (2002) J Catal 209:445

    Article  CAS  Google Scholar 

  28. Afanasiev P, Fischer L, Beauchesne F, Danot M, Gaborit V, Breysse M, Catal Lett 64 (2000) 59; Trunov VK, Kovba LM, Sirotkina EI, Dokl Akad Nauk SSSR 153 (1963) 1085

  29. See for example: Herle PS, Hegde MS, Vasathacharya NY, Philip S, Rama Rao MV, Sripathi T (1997) J Solid State Chem 134:120

    Article  Google Scholar 

  30. Volpe L, Oyama ST, Boudart M (1983) Stud Surf Sci Catal 16:147

    Article  CAS  Google Scholar 

  31. Oyama ST, Kapoor R, Oyama HT, Hoffmann DJ, Matijevic E (1993) J Mater Res 8:1450

    Article  CAS  Google Scholar 

  32. Jackson SK, Layland RC, Zur Loye H-C (1999) J Alloys Compd 291:94

    Article  CAS  Google Scholar 

  33. Clarke SJ, DiSalvo FJ (1997) J Solid State Chem 132:3

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to Ms N Bock and Dr FJ Allison for assistance with SEM and TEM measurements. DHG and WY would like to thank the Royal Society for awarding WY a Sino-British Fellowship and for funding this work. DHG would also like to thank the EPSRC for the award of an Advanced Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Lesterb, E. & Gregory, D.H. A study on the synthesis and characterisation of nanocrystalline transition metal oxynitrides . J Mater Sci 42, 6779–6786 (2007). https://doi.org/10.1007/s10853-006-1464-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1464-y

Keywords

Navigation