Skip to main content
Log in

Lattice Boltzmann method based computation of the permeability of the orthogonal plain-weave fabric preforms

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Changes in the permeability tensor of fabric preforms caused by various modes of fabric distortion and fabric-layers shifting and compacting is one of the key factors controlling resin flow during the infiltration stage of the common polymer-matrix composite liquid-molding processes. While direct measurements of the fabric permeability tensor generally yield the most reliable results, a large number of fabric architectures used and numerous deformation and layers rearrangement modes necessitates the development and the use of computational models for prediction of the preform permeability tensor. The Lattice Boltzmann method is used in the present work to study the effect of the mold walls, the compaction pressure, the fabric-tows shearing and the fabric-layers shifting on the permeability tensor of preforms based on orthogonal balanced plain-weave fabrics. The model predictions are compared with their respective experimental counterparts available in the literature and a reasonably good agreement is found between the corresponding sets of results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

f:

Particle distribution function

f f :

Fiber volume fraction

h :

Fabric thickness (m)

ϕ:

Relative dimensionless shift of the adjacent fabric layers

K :

Permeability tensor of the fabric (m2)

L :

In-plane quarter cell dimension (m)

p :

Pressure (Pa)

α:

Shear angle (deg.)

r f :

Fiber radius (m)

s :

Relative shift of the adjacent fabric layers (m)

e :

Particle velocity component

ρ:

Fluid point density (particles/lattice point)

Ω:

Collision operator

t :

Time (s)

τ:

Time relaxation parameter

t i :

Velocity component weighting factor

u :

Fluid nodal velocity (lattice parameters/time increment)

ν:

Fluid kinematic viscosity (m2/s)

x :

Nodal position vector

bot:

Quantity associated with the bottom surface of the fabric

top:

Quantity associated with the top surface of the fabric

B:

Quantity associated with the bottom channel

eq:

Equilibrium quantity

F:

Quantity associated with the fabric

T:

Quantity associated with the top channel

References

  1. Lee LJ (1997) In: Gutowski TG (eds) Advanced composites manufacturing. John Wiley & Sons, New York, pp. 393–456

    Google Scholar 

  2. Lam RC, Kardos JL (1988) In: Proc Third Tech Conf. American Society for Composites

  3. Gutowski TG (1985) in SAMPE Quart 4

  4. Gebart BR (1992) J Compos Mater 26:1100

    Article  CAS  Google Scholar 

  5. Ranganathan S, Phelan F, Advani SG (1996) Polym Compos 17:222

    Article  CAS  Google Scholar 

  6. Ranganathan S, Wise GM, Phelan FR, Parnas RS, Advani SG (1994) A numerical and experimental study of the permeability of fiber preforms. In: Proc Tenth ASM/ESD Advanced Composites Conf, Oct

  7. Grujicic M, Chittajallu KM, Walsh S, Grujicic M (2003) Effect of shear, compaction and nesting on permeability of the orthogonal plain-weave fabric preforms. Applied Surface Science, submitted for publication, Oct

  8. Martys N, Chen H (1996) Phys Rev 53:743

    CAS  Google Scholar 

  9. Kandhai D, Vidal DJE, Hoekstra AG, Hoefsloot H, Iedema P, Sloot PMA (1998) Intl J Modern Phys C 9:1123

    Article  Google Scholar 

  10. Spaid MAA, Phelan FR (1997) Phys Fluids 9:2468

    Article  CAS  Google Scholar 

  11. Chen S, Doolen GD (1998) Annu Rev Fluid Mech 30:329

    Article  Google Scholar 

  12. Dungan FD, Senoguz MT, Sastry AM, Faillaci DA (2001) J Compos Mater 35:1250

    CAS  Google Scholar 

  13. Ito M, Chou TW (1998) J Compos Mater 32:2

    Article  CAS  Google Scholar 

  14. Pearce N, Summerscales J (1995) Compos Manuf 6:15

    Article  CAS  Google Scholar 

  15. Saunders RA, Lekakou C, Bader MG (1998) Compos Part A 29A:443

    Article  CAS  Google Scholar 

  16. Hu J, Newton A (1997) J Text Inst Part I 88:242

    Article  Google Scholar 

  17. Chen B, Chou TW (1999) Compos Sci Technol 59:1519

    Article  Google Scholar 

  18. Chen B, Chou TW (2000) Compos Sci Technol 60:2223

    Article  Google Scholar 

  19. Chen B, Lang EJ, Chou TW (2001) Mater Sci Eng A317:188

    Article  Google Scholar 

  20. Bhatnager PL, Gross EP, Krook M (1954) Phys Rev 94:511

    Article  Google Scholar 

  21. Chen H, Chen S, Mathaeus WH (1992) Phys Rev A 45:5339

    Article  Google Scholar 

  22. Stockman HW (1999) Sandai Report, Sand99-0162

  23. Dungan FD, Senoguz MT, Sastry AM, Faillaci DA (2001) J Compos Mater 35:1250

    CAS  Google Scholar 

  24. Dungan FD, Senoguz MT, Sastry AM, Faillaci DA (1999) J Reinforced Plastics Compos 18:472

    Article  CAS  Google Scholar 

  25. Sozer EM, Chen B, Graham PJ, Bickerton S, Chou TW, Advani SG (1999) Proceedings of the fifth international conference on flow processes in composite materials, Plymouth, UK, 12–14 July, pp 25–36

Download references

Acknowledgements

The material presented in this paper is based on work supported by the U.S. Army Grant Number DAAD19-01-1-0661. The authors are indebted to Drs. Walter Roy, Fred Stanton, William DeRosset and Dennis Helfritch of ARL for the support and a continuing interest in the present work. The authors also acknowledge the support of the Office of High Performance Computing Facilities at Clemson University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Grujicic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grujicic, M., Chittajallu, K. & Walsh, S. Lattice Boltzmann method based computation of the permeability of the orthogonal plain-weave fabric preforms. J Mater Sci 41, 7989–8000 (2006). https://doi.org/10.1007/s10853-006-0864-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0864-3

Keywords

Navigation