Skip to main content
Log in

Some aspects of the anisotropy of grain boundary segregation and wetting

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A recently developed model of grain boundary (GB) segregation, in terms of the five macroscopic parameters of GB orientation, has been exercised to explore the anisotropy of GB segregation. The five macroscopic GB orientation parameters are defined by means of the orientations of the two crystallographic planes that terminate the crystals on either side of the GB, and a twist angle. Some important conclusions include the following: (a) the composition of a boundary depends on all five parameters of GB orientation, (b) the segregation profile across a GB depends on the two planes which terminate the adjacent crystals, (c) the composition profile across GB’s terminated by identical crystallographic planes is symmetric, but is asymmetric when GB’s are terminated by different planes, and (d) the strength of the segregation on one side of a GB influences the extent of segregation on the other. Some experimental results on Nb-doped TiO2 are presented in order to verify above predicted trends. In addition, it is shown that the model predicts the possibility of anisotropic GB wetting transitions as two-phase coexistence is approached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pang Y, Wynblatt P (2005) J Am Ceram Soc 88:2286

    Article  CAS  Google Scholar 

  2. Pang Y, Wynblatt P (2006) J Am Ceram Soc 89:666

    Article  CAS  Google Scholar 

  3. Wolf D (1989) Acta Metall 37:1983

    Article  CAS  Google Scholar 

  4. Wolf D (1989) Acta Metall 37:2823

    Article  CAS  Google Scholar 

  5. Wolf D (1990) Acta Metall Mater 38:791

    Article  CAS  Google Scholar 

  6. Seidman DN (2002) Annu Rev Mater Res 32:235

    Article  CAS  Google Scholar 

  7. Wynblatt P, Shi Z (2005) J Mater Sci 40:2765

    Article  CAS  Google Scholar 

  8. Bishop CM, Cannon RM, Carter WC (2005) Acta Mater 53:4755

    Article  CAS  Google Scholar 

  9. Tang M, Carter WC, Cannon RM (2006) Phys Rev B 73(2):24102

    Article  Google Scholar 

  10. Wynblatt P, Takashima M (2001) In: Eustathopoulos N, Nogi K, Sobczak N (eds), Proceedings of HTC-2000, Trans JWRI 30:11

  11. Wynblatt P, Takashima M (2001) Interface Sci 9:265

    Article  CAS  Google Scholar 

  12. López GA, Mittemeijer EJ, Straumal BB (2004) Acta Mater 52:4537

    Article  Google Scholar 

  13. Avishai A, Sheu C, Kaplan WD (2005) Acta Mater 53:1559

    Article  CAS  Google Scholar 

  14. Avishai A, Kaplan WD (2005) Acta Mater 53:1571

    Article  CAS  Google Scholar 

  15. Mclean D (1957) Grain boundaries in metals. Oxford Press, London

    Google Scholar 

  16. Wynblatt P, Ku RC (1979) In: Johnson WC, Blakely JM (eds), Interfacial segregation. ASM, Metals Park, Ohio, p 115

  17. Wynblatt P, Saul A, Chatain D (1998) Acta Mater 46:2337

    Article  CAS  Google Scholar 

  18. Lee YW, Aaronson HI (1980) Surface Sci 95:227

    Article  CAS  Google Scholar 

  19. Lee YW, Aaronson HI (1980) Acta Metall 28:539

    Article  Google Scholar 

  20. Udler D, Seidman DN (1992) Phys Stat Sol B 172:267

    Article  CAS  Google Scholar 

  21. Udler D, Seidman DN (1994) Acta Metall Mater 42:1959

    Article  CAS  Google Scholar 

  22. Foiles SM, Baskes MI, MS Daw (1986) Phys Rev B33:7983

    Article  Google Scholar 

  23. Cahn JW (1977) J Chem Phys 66:3667

    Article  CAS  Google Scholar 

  24. Schick M (1990) In: Charvolin J, Joanny JF, Zinn-Justin J (eds), Liquids at interfaces. Elsevier, Amsterdam, p 415

  25. Widom B (1978) J Chem Phys 68:3878

    Article  CAS  Google Scholar 

  26. Cahn JW (2000) Physica A 279:195

    Article  Google Scholar 

Download references

Acknowledgements

PW and YP wish to acknowledge with thanks support of their research by the MRSEC Program of the National Science Foundation under award DMR-0079996. DC acknowledges with thanks support of her research by the COOLCOP project of the European Space Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Wynblatt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wynblatt, P., Chatain, D. & Pang, Y. Some aspects of the anisotropy of grain boundary segregation and wetting. J Mater Sci 41, 7760–7768 (2006). https://doi.org/10.1007/s10853-006-0406-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0406-z

Keywords

Navigation