Skip to main content
Log in

Riemannian Optimization for Registration of Curves in Elastic Shape Analysis

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In elastic shape analysis, a representation of a shape is invariant to translation, scaling, rotation, and reparameterization, and important problems such as computing the distance and geodesic between two curves, the mean of a set of curves, and other statistical analyses require finding a best rotation and reparameterization between two curves. In this paper, we focus on this key subproblem and study different tools for optimizations on the joint group of rotations and reparameterizations. We develop and analyze a novel Riemannian optimization approach and evaluate its use in shape distance computation and classification using two public datasets. Experiments show significant advantages in computational time and reliability in performance compared to the current state-of-the-art method. A brief version of this paper can be found in Huang et al. (Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton, NJ (2008)

    Book  MATH  Google Scholar 

  2. Baker, C.G.: Riemannian manifold trust-region methods with applications to eigenproblems. PhD thesis, Florida State University, Department of Computational Science (2008)

  3. Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific, Belmont (1995)

    MATH  Google Scholar 

  4. Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. Wiley, Chichester (1998)

    MATH  Google Scholar 

  5. Huang, W., Absil, P.-A., Gallivan, K.A.: A Riemannian symmetric rank-one trust-region method. Math. Progr. 150(2), 179–216 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Huang, W., Gallivan, K.A., Absil, P.-A.: A broyden class of quasi-Newton methods for Riemannian optimization. SIAM J. Optim. 25(3), 1660–1685 (2015)

    Article  MathSciNet  Google Scholar 

  7. Huang, W., Gallivan, K.A., Srivastava, A., Absil, P.-A.: Riemannian optimization for elastic shape analysis. In: Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems (2014)

  8. Huang, W.: Optimization algorithms on Riemannian manifolds with applications. PhD thesis, Florida State University, Department of Mathematics (2013)

  9. Huang, W., You, Y., Gallivan, K., Absil, P.-A.: Karcher mean in elastic shape analysis. In: Drira, H., Kurtek, S., Turaga, P. (eds.). Proceedings of the 1st International Workshop on Differential Geometry in Computer Vision for Analysis of Shapes, Images and Trajectories, pp. 2.1–2.11. BMVA Press (September 2015)

  10. Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16(2), 81–121 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Klassen, E., Srivastava, A., Mio, W., Joshi, S.H.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 372–383 (2004). doi:10.1109/TPAMI.2004.1262333

    Article  Google Scholar 

  12. Lahiri, S., Robinson, D., Klassen, E.: Precise matching of PL curves in \(\mathbb{R}^{n}\) in the square root velocity framework, pp. 1–41 (January 2015). arXiv:1501.00577

  13. O’Neill, B.: Semi-Riemannian Geometry. Academic Press Incorporated (Harcourt Brace Jovanovich Publishers), New York (1983)

    MATH  Google Scholar 

  14. Qi, C.: Numerical optimization methods on Riemannian manifolds. PhD thesis, Florida State University, Department of Mathematics (2011)

  15. Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22(2), 596–627 (2012). doi:10.1137/11082885X

    Article  MathSciNet  MATH  Google Scholar 

  16. Srivastava, A., Klassen, E., Joshi, S.H., Jermyn, I.H.: Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(7), 1415–1428 (2011). doi:10.1109/TPAMI.2010.184

    Article  Google Scholar 

  17. Sebastian, T.B., Klein, P.N., Kimia, B.B.: On aligning curves. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 116–125 (2003). doi:10.1109/TPAMI.2003.1159951

    Article  Google Scholar 

  18. Temple University. Shape similarity research project. www.dabi.temple.edu/~shape/MPEG7/dataset.html

  19. Wu, S.G., Bao, F.S., Xu, E.Y., Wang, Y.-X., Chang, Y.-F., Xiang, Q.-L.: A leaf recognition algorithm for plant classification using probabilistic neural network. In: 2007 IEEE International Symposium on Signal Processing and Information Technology, pp. 11–16 (2007). arXiv:0707.4289v1

  20. You, Y., Huang, W., Gallivan, K.A., Absil, P.-A.: A Riemannian approach for computing geodesics in elastic shape analysis. In: 3rd IEEE Global Conference on Signal and Information Processing (December 2015). To appear

  21. Younes, L., Michor, P., Shah, J., Mumford, D.: A metric on shape space with explicit geodesics. Rendiconti Lincei - Matematica e Applicazioni 9(1), 25–57 (2008). doi:10.4171/RLM/506

    Article  MathSciNet  Google Scholar 

  22. Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58(2), 565–586 (1998). doi:10.1137/S0036139995287685

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to three anonymous referees for the careful reading and helpful comments and suggestions especially, for the suggestion by one referee to include the discussion of the nonuniform-grid Coordinate Descent algorithm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Huang.

Appendix: Proofs

Appendix: Proofs

Proof of Theorem 1

Proof

By definition, for any \(\tilde{q} \in [q]_{{{\mathrm{\mathrm {SO}}}}(n) \times {\varGamma }_s^o}\), there exist \(\tilde{O} \in {{\mathrm{\mathrm {SO}}}}(n)\) and \(\tilde{\gamma } \in {\varGamma }_s^o\) such that \(\tilde{q} = \tilde{O} (q, \tilde{\gamma })\). It follows from [12, Lemma11] that there exists a sequence \(\{\gamma _i\} \subset {\varGamma }^o\) such that \((q, \gamma _i) \rightarrow (q, \tilde{\gamma })\) with respect to the \(\mathbb {L}^2\) metric. Since \({{\mathrm{\mathrm {SO}}}}(n)\) is isometric for \(\mathbb {L}^2\), we have \(\tilde{O} (q, \gamma _i) \rightarrow \tilde{O} (q, \tilde{\gamma })\), which implies that \(\tilde{q} \in \overline{[q]}\). Therefore, we obtain \([q]_{{{\mathrm{\mathrm {SO}}}}(n) \times {\varGamma }_s^o} \subseteq \overline{[q]}\). We finished proving the first statement.

For any \(v \in \overline{[q]}\), there is a sequence of \(\{O_i\}\) and \(\{\gamma _i\}\) such that \(O_i (q, \gamma _i) \rightarrow v\) with respect to the \(\mathbb {L}^2\) metric. Since \({{\mathrm{\mathrm {SO}}}}(n)\) is a compact set, there exists a convergent subsequence of \(\{O_i\}\), i.e., \(\{O_{i_j}\} \subseteq \{O_i\}\) and \(O_{i_j} \rightarrow \tilde{O}\) with respect to 2-norm. Let \(\tilde{q}\) denote \(\tilde{O}^T v\). It follows that \(O_{i_j} (q, \gamma _{i_j}) \rightarrow \tilde{O} \tilde{q}\). We have

$$\begin{aligned}&\Vert O_{i_{j}} (q, \gamma _{i_{j}}) - \tilde{O} \tilde{q}\Vert _{\mathbb {L}^2} \\&\quad = \Vert O_{i_{j}} (q, \gamma _{i_{j}}) - \tilde{O} (q, \gamma _{i_{j}}) + \tilde{O} (q, \gamma _{i_{j}}) - \tilde{O} \tilde{q}\Vert _{\mathbb {L}^2} \\&\quad \ge \Vert \tilde{O} (q, \gamma _{i_{j}}) - \tilde{O} \tilde{q}\Vert _{\mathbb {L}^2} - \Vert O_{i_{j}} (q, \gamma _{i_{j}}) - \tilde{O} (q, \gamma _{i_{j}})\Vert _{\mathbb {L}^2}\\&\quad = \Vert (q, \gamma _{i_{j}}) - \tilde{q}\Vert _{\mathbb {L}^2} - \Vert O_{i_{j}} - \tilde{O}\Vert _2 \Vert q\Vert _{\mathbb {L}^2}. \end{aligned}$$

It follows that

$$\begin{aligned}&\Vert O_{i_{j}} - \tilde{O}\Vert _2 \Vert q\Vert _{\mathbb {L}^2} + \Vert O_{i_{j}} (q, \gamma _{i_{j}}) - \tilde{O} \tilde{q}\Vert _{\mathbb {L}^2} \nonumber \\&\quad \ge \Vert (q, \gamma _{i_{j}}) - \tilde{q}\Vert _{\mathbb {L}^2}, \end{aligned}$$
(21)

which implies \((q, \gamma _{i_j}) \rightarrow \tilde{q}\). Since \(q^{-1}(0_n)\) has measure zero, it follows from [12, Corollary 3] that there exists \(\tilde{\gamma } \in {\varGamma }_s^o\) such that \(\tilde{q} = (q, \tilde{\gamma })\). Therefore, \(v = \tilde{O} (q, \tilde{\gamma }) \in [q]_{{{\mathrm{\mathrm {SO}}}}(n) \times {\varGamma }_s^o}\), which implies \(\overline{[q]} \subseteq [q]_{{{\mathrm{\mathrm {SO}}}}(n) \times {\varGamma }_s^o}\). \(\square \)

Proof of Theorem 2:

Proof

By definition, for any \(\tilde{q} \in [q]_{{{\mathrm{\mathrm {SO}}}}(n) \times {\varGamma }_s^c}\), there exist \(\tilde{O} \in {{\mathrm{\mathrm {SO}}}}(n)\) and \((\tilde{m}, \tilde{\gamma }) \in {\varGamma }_s^c\) such that \(\tilde{q} = \tilde{O} ((q, \tilde{m}), \tilde{\gamma })\). It follows from [12, Lemma 11] that there exists a sequence \(\{\gamma _i\} \subset {\varGamma }^o\) such that \(((q, \tilde{m}), \gamma _i) \rightarrow ((q, \tilde{m}), \tilde{\gamma })\) with respect to the \(\mathbb {L}^2\) metric. Since \({{\mathrm{\mathrm {SO}}}}(n)\) is isometric for \(\mathbb {L}^2\), we have \(\tilde{O} ((q, \tilde{m}), \gamma _i) \rightarrow \tilde{O} ((q, \tilde{m}), \tilde{\gamma })\), which implies that \(\tilde{q} \in \overline{[q]}\). Therefore, we obtain \([q]_{{{\mathrm{\mathrm {SO}}}}(n) \times {\varGamma }_s^o} \subseteq \overline{[q]}\). We finished proving the first statement.

For any \(v \in \overline{[q]}\), there is a sequence of \(\{O_i\}\), \(\{m_i\}\) and \(\{\gamma _i\}\) such that \(O_i ((q, m_i), \gamma _i) \rightarrow v\) with respect to the \(\mathbb {L}^2\) metric. Since \({{\mathrm{\mathrm {SO}}}}(n)\) and [0, 1] are compact sets, there exists a convergent subsequence of \(\{O_i\}\) and \(m_i\), i.e., \(\{O_{i_j}\} \subseteq \{O_i\}\) and \(O_{i_j} \rightarrow \tilde{O}\) with respect to 2-norm and \(\{m_{i_j}\} \subseteq \{m_i\}\) and \(m_{i_j} \rightarrow \tilde{m}\). Let \(\tilde{q}\) denote \(\tilde{O}^T (v, - \tilde{m})\). It follows that \(O_{i_j} ((q, m_{i_j}), \gamma _{i_j}) \rightarrow \tilde{O} (\tilde{q}, \tilde{m})\).

Proceeding as (21), we have

$$\begin{aligned}&\Vert O_{i_{j}} - \tilde{O}\Vert _2 \Vert (q, m_{i_j})\Vert _{\mathbb {L}^2} + \Vert O_{i_{j}} ((q, m_{i_j}), \gamma _{i_{j}}) \nonumber \\&\qquad - \tilde{O} (\tilde{q}, \tilde{m})\Vert _{\mathbb {L}^2} \nonumber \\&\quad \ge \Vert ((q, m_{i_j}), \gamma _{i_{j}}) - (\tilde{q}, \tilde{m})\Vert _{\mathbb {L}^2}. \end{aligned}$$
(22)

It holds that

$$\begin{aligned}&\Vert ((q, m_{i_j}), \gamma _{i_{j}}) - (\tilde{q}, \tilde{m})\Vert _{\mathbb {L}^2} \nonumber \\&\quad = \Vert ((q, m_{i_j}), \gamma _{i_{j}}) - ((q, \tilde{m}), \gamma _{i_{j}}) + ((q, \tilde{m}), \gamma _{i_{j}}) - (\tilde{q}, \tilde{m})\Vert _{\mathbb {L}^2} \nonumber \\&\quad \ge \Vert ((q, \tilde{m}), \gamma _{i_{j}}) - (\tilde{q}, \tilde{m})\Vert _{\mathbb {L}^2} - \Vert (q, m_{i_j}) - (q, \tilde{m})\Vert _{\mathbb {L}^2}. \nonumber \\ \end{aligned}$$
(23)

Since q is absolutely continuous, \(m_{i_j} \rightarrow \tilde{m}\) implies \(\Vert (q, m_{i_j}) - (q, \tilde{m})\Vert _{\mathbb {L}^2} \rightarrow 0\). Therefore, using (22) and (23) yields \(((q, \tilde{m}), \gamma _{i_j}) \rightarrow (\tilde{q}, \tilde{m})\). Since \(q^{-1}(0_n)\) has measure zero, \((q, \tilde{m})^{-1}(0_n)\) also has measure zero. It follows from [12, Corollary 3] that there exists \(\tilde{\gamma } \in {\varGamma }_s^o\) such that \((\tilde{q}, \tilde{m}) = ((q, \tilde{m}), \tilde{\gamma })\). Therefore, \(v = \tilde{O} ((q, \tilde{m}), \tilde{\gamma }) \in [q]_{{{\mathrm{\mathrm {SO}}}}(n) \times {\varGamma }_s^c}\), which implies \(\overline{[q]} \subseteq [q]_{{{\mathrm{\mathrm {SO}}}}(n) \times {\varGamma }_s^c}\). \(\square \)

Proof of Lemma 2:

Proof

The cost function L(Oml) is equal to

$$\begin{aligned}&2 - 2 \int _0^{1} {{\mathrm{\mathrm {trace}}}}(q_2\left( \rho _{l, m}(t)\right) l(t) q_1(t)^T O^T) \mathrm{d} t \\&\quad + \omega \int _0^{1} \left( l^2(t)+\frac{1}{l^2(t)}\right) \sqrt{1+l^4(t)} \mathrm{d}t. \end{aligned}$$

Consider the cost function defined on the embedding manifold

$$\begin{aligned}&\bar{L}(O, m, l): \mathbb {R}^{n \times n} \times \mathbb {R} \times \mathbb {L}^2 \rightarrow \mathbb {R}: (O, m, l) \\&\quad \mapsto 2 - 2 \int _0^{1} {{\mathrm{\mathrm {trace}}}}(q_2\left( \rho _{l, m}(t)\right) l(t) q_1(t)^T O^T) \mathrm{d} t \\&\qquad +\, \omega \int _0^{1} \left( l^2(t)+\frac{1}{l^2(t)}\right) \sqrt{1+l^4(t)} \mathrm{d}t. \end{aligned}$$

The gradient for the variable O is

$$\begin{aligned} \nabla _O \bar{L}(O, m, l) = - 2 \int _0^{1} q_2\left( \rho _{l, m}(t)\right) l(t) q_1(t)^T \mathrm{d} t \in \mathbb {R}^{n \times n}. \end{aligned}$$

The gradient for the variable m is

$$\begin{aligned}&\nabla _m \bar{L}(O, m, l) \\&\quad = -2 \int _0^{1} {\left\langle O q_1(t),l(t) q_2'\left( \rho _{l, m}(t)\right) \right\rangle _{2}} \mathrm{d} t. \end{aligned}$$

The gradient for the variable l is not easy to compute directly. First, consider the directional derivative along \(v \in {{\mathrm{\mathrm {T}}}}_{l} \mathcal {L}\).

$$\begin{aligned}&{{\mathrm{\mathrm {D}}}}_{l} \bar{L}(O, m, l) [v] \\&\quad = -2 \int _0^{1} \Big \langle O q_1(t), \\&\qquad v(t) q_2\left( \rho _{l, m}(t)\right) + 2 l(t) q_2'\left( \rho _{l, m}(t)\right) \int _0^t l(s) v(s) ds \Big \rangle _2 \mathrm{d} t \\&\quad + \omega \int _0^1 2 v(t) l(t) (2 - 1 / l^4(t)) \sqrt{1 + l^4(t)} \mathrm{d}t. \end{aligned}$$

Simplifying, we have

$$\begin{aligned}&{{\mathrm{\mathrm {D}}}}_l \bar{L}(O, m, l) [v] \\&\quad = -2 \int _0^{1} {\left\langle O q_1(t),q_2\left( \rho _{l, m}(t)\right) \right\rangle _{2}} v(t) \mathrm{d} t\\&\qquad - 2 \int _0^{1} {\left\langle O q_1(t),2 l(t) q_2'\left( \rho _{l, m}(t)\right) \right\rangle _{2}}\int _0^t l^3(s) v(s) \mathrm{d}s \mathrm{d} t \\&\qquad + 2 \omega \int _0^1 l(t) (2 - 1 / l^4(t)) \sqrt{1 + l^4(t)} v(t) \mathrm{d} t. \end{aligned}$$

If

$$\begin{aligned}&x(t) = {\left\langle O q_1(t),q_2\left( \rho _{l, m}(t)\right) \right\rangle _{2}} \\&y'(t) = {\left\langle O q_1(t),2 l(t) q_2'\left( \rho _{l, m}(t)\right) \right\rangle _{2}}\\&z(t) = \omega l(t) (2 - 1 / l^4(t)) \sqrt{1 + l^4(t)}, \end{aligned}$$

then

$$\begin{aligned}&{{\mathrm{\mathrm {D}}}}_l \bar{L}(O, m, l) [v] - {\left\langle 2 z(t),v(t) \right\rangle _{\mathbb {L}^2}} \\&\quad =-2 \int _0^{1} x(t) v(t) \mathrm{d} t - 2 \int _0^{1} y'(t) \int _0^t l(s) v(s) \mathrm{d}s \mathrm{d} t \\&\quad = -2 \int _0^{1} x(t) v(t) \mathrm{d} t - 2 \Big (y(t) \int _0^t l(s) v(s) \mathrm{d}s |_0^{1} \\&\qquad - \int _0^{1} y(t) l(t) v(t) \mathrm{d} t\Big ) \hbox { (integration by parts)} \\&\quad = -2 \int _0^{1} x(t) v(t) \mathrm{d} t + 2 \int _0^{1} y(t) l(t) v(t) \mathrm{d} t \\&\qquad \quad \hbox { (by }v \in {{\mathrm{\mathrm {T}}}}_l \mathcal {L}\hbox {)} \\&\quad = \int _0^{1} (2 y(t) l(t) - 2 x(t)) v(t) \mathrm{d} t \\&\quad = {\left\langle 2 y l - 2 x,v \right\rangle _{\mathbb {L}^2}}. \end{aligned}$$

Since the gradient is the vector that satisfies

$$\begin{aligned} D_l \bar{L}(O, m, l) [v] = {\left\langle \nabla _l \bar{L}(O, m, l),v(t) \right\rangle _{\mathbb {L}^2}}, \end{aligned}$$

we obtain

$$\begin{aligned} \nabla _l \bar{L}(O, m, l) = 2 y(t) l(t) - 2 x(t) + 2 z(t). \end{aligned}$$

Finally, the Riemannian gradient is given by projecting each component of \(\bar{L}(O, m, l)\) to its associated manifold. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Gallivan, K.A., Srivastava, A. et al. Riemannian Optimization for Registration of Curves in Elastic Shape Analysis. J Math Imaging Vis 54, 320–343 (2016). https://doi.org/10.1007/s10851-015-0606-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-015-0606-8

Keywords

Navigation