Skip to main content
Log in

A Unified Variational Volume Registration Method Based on Automatically Learned Brain Structures

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We introduce a new volumetric registration technique that effectively combines active surfaces with the finite element method. The method simultaneously aligns multi-label automatic structural segmentation results, which can be obtained by the application of existing segmentation software, to produce an anatomically accurate 3D registration. This registration is obtained by the minimization of a single energy functional. Just like registering raw images, obtaining a 3D registration this way still requires solving a fundamentally ill-posed problem. We explain through academic examples as well as an MRI dataset with manual anatomical labels, which are hidden from the registration method, how the quality of a registration method can be measured and the advantages our approach offers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Pohl, P., Van Genderen, J.L.: Review article multisensor image fusion in remote sensing: concepts, methods and applications. Int. J. Remote Sens. 19(5), 823–854 (1998)

    Article  Google Scholar 

  2. Dhond, U.R., Aggarwal, J.K.: Structure from stereo–a review. IEEE Trans. Syst. Man Cybern. 19(6), 1489–1510 (1989)

    Article  MathSciNet  Google Scholar 

  3. Christensen, G.E., Rabbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. IEEE Trans. Image Process. 5, 1435–1447 (1996)

    Article  Google Scholar 

  4. Thompson, P.M., Giedd, J.N., Woods, R.P., et al.: Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature 404, 190–193 (2000)

    Article  Google Scholar 

  5. Yanovsky, I., Osher, S., Thompson, P., et al.: Log-unbiased large deformation image registration. In: VISAPP, pp. 272–279 (2007)

  6. Klein, A., Andersson, J., Ardekani, B.A., et al.: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46, 786–802 (2009)

    Article  Google Scholar 

  7. Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  8. Le Guyader, C., Vese, L.: A Combined Segmentation and Registration Framework with a Nonlinear Elasticity Smoother. UCLA CAM Report pp. 08–16 (2008)

  9. Unal, G., Slabaugh, G.: Coupled PDEs for non-rigid registration and segmentation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2005)

  10. Yezzi, A.: A variational framework for integrating segmentation and registration through active contours. Med. Image Anal. 7, 171–185 (2003)

    Article  Google Scholar 

  11. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  12. Lie, J., Lysaker, M., Tai, X.: A piecewise constant level set framework. Int. J. Numer. Anal. Model. 2, 422–438 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Tu, Z., Narr, K.L., Dollar, P., et al.: Brain anatomical structure segmentation by hybrid discriminative/generative models. IEEE Trans. Med. Imaging 27(4), 495–508 (2008)

    Article  Google Scholar 

  14. Joshi, A.A., Shattuck, D.W., Thompson, P.M., et al.: Surface-constrained volumetric brain registration using harmonic mappings. IEEE Trans. Med. Imaging 26(12), 1657–1669 (2007)

    Article  Google Scholar 

  15. Postelnicu, G., Zöllei, L., Fischl, B.: Combined volumetric and surface registration. In: IEEE Transactions on Medical Imaging, pp. 508–522 (2009)

  16. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, New York (2000)

    MATH  Google Scholar 

  17. Gosz, M.: The Finite Element Method: Applications in Solids, Structures, and Heat Transfer. Taylor & Francis, London (2006)

    MATH  Google Scholar 

  18. Teran, J., Sifakis, E., Irving, G.: Robust quasistatic finite elements and flesh simulation. In: Symposium on Computer Animation, pp. 181–190 (2005)

  19. Ferrant, M., Warfield, S., Guttmann, C., et al.: 3D Image matching using a finite element based elastic deformation model. In: Lecture Notes in Computer Science, pp. 202–209 (1999)

  20. Ferrant, M., Warfield, S., Nabavi, A., et al.: Registration of 3D intraoperative MR images of the brain using a finite element biomechanical model. In: MICCAI 2000, pp. 10 (2000)

  21. Schnabel, J.: Validation of nonrigid image registration using finite-element methods: application to breast MR. IEEE Trans. Med. Imaging 22, 238 (2003)

    Article  Google Scholar 

  22. Brock, K.K., Sharpe, M.B., Dawson, L.A., et al.: Accuracy of finite element model-based multi-organ deformable image registration. Med. Phys. 32, 1647 (2005)

    Article  Google Scholar 

  23. Jung, M., Chung, G., Sundaramoorthi, G., et al.: Sobolev gradients and joint variational image segmentation, denoising and deblurring. In: SPIE Electronic Imaging Conference Proceedings, vol. 7246 (2009)

  24. Renka, R.: Constructing fair curves and surfaces with a Sobolev gradient method. Comput. Aided Geom. Des. 21, 137–149 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9(2), 179–194 (1999)

    Article  Google Scholar 

  26. Lederman, C., Joshi, A., Dinov, I., et al.: The generation of tetrahedral mesh models for neuroanatomical MRI. NeuroImage 55, 153–164 (2011)

    Article  Google Scholar 

  27. Tarantola, A.: Inverse Problem Theory. Society for Industrial and Applied Mathematics (2004)

  28. Pedegral, P.: Variational Methods in Nonlinear Elasticity. Society for Industrial Mathematics (SIAM), Philadelphia (2000)

    Google Scholar 

  29. Irving, G., Teran, J., Fedkiw, R.: Invertible finite elements for robust simulation of large deformations. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 131–140 (2004)

  30. Lin, T., Dinov, I., Toga, A., Vese, L.: Nonlinear elasticity registration and sobolev gradients biomedical image registration. In: Lecture Notes in Computer Science, vol. 6204, pp. 269–280 (2010)

  31. Yanovsky, I., Le Guyader, C., Leow, A., et al.: Nonlinear elastic registration with unbiased regularization in three dimensions. In: MICCAI (2008)

  32. Dinov, I.D., Van Horn, J.D., Lozev, K.M., et al.: fficient, distributed and interactive neuroimaging data analysis using the LONI pipeline. Front. Neuroinformatics 3, 22 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Lederman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lederman, C., Joshi, A., Dinov, I. et al. A Unified Variational Volume Registration Method Based on Automatically Learned Brain Structures. J Math Imaging Vis 55, 179–198 (2016). https://doi.org/10.1007/s10851-015-0604-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-015-0604-x

Keywords

Navigation