Skip to main content
Log in

PHLST5: A Practical and Improved Version of Polyharmonic Local Sine Transform

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We introduce a practical and improved version of the Polyharmonic Local Sine Transform (PHLST) called PHLST5. After partitioning an input image into a set of rectangular blocks, the original PHLST decomposes each block into a polyharmonic component and a residual. Each polyharmonic component solves a polyharmonic equation with the boundary conditions that match the values and normal derivatives of even orders along the boundary of the corresponding block with those of the original image block. Thanks to these boundary conditions, the residual component can be expanded into a Fourier sine series without facing the Gibbs phenomenon, and its Fourier sine coefficients decay faster than those of the original block. Due to the difficulty of estimating normal derivatives of higher orders, however, only the harmonic case (i.e., Laplace’s equation) has been implemented to date, which was called Local Laplace Sine Transform (LLST). In that case, the Fourier sine coefficients of the residual decay in the order O(‖k−3), where k is the frequency index vector. Unlike the original PHLST, PHLST5 only imposes the boundary values and the first order normal derivatives as the boundary conditions, which can be estimated using the information of neighbouring image blocks. In this paper, we derive a fast algorithm to compute a 5th degree polyharmonic function that satisfies such boundary conditions. Although the Fourier sine coefficients of the residual of PHLST5 possess the same decaying rate as in LLST, by using additional information of first order normal derivative from the boundary, the blocking artifacts are largely suppressed in PHLST5 and the residual component becomes much smaller than that of LLST. Therefore PHLST5 provides a better approximation result. We shall also show numerical experiments that demonstrate the superiority of PHLST5 over the original LLST in terms of the efficiency of approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Averbuch, A., Israeli, M., Vozovoi, L.: A fast Poisson solver of arbitrary order accuracy in rectangular regions. SIAM J. Sci. Comput. 19(3), 933–952 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bialeck, B., Karageorghis, A.: A Legendre spectral Galerkin method for the biharmonic Dirichlet problem. SIAM J. Sci. Comput. 22(5), 1549–1569 (2000)

    Article  MathSciNet  Google Scholar 

  3. Bjørstad, P.: Fast numerical solution of the biharmonic Dirichlet problem on rectangles. SIAM J. Numer. Anal. 20(1), 59–71 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  4. Braverman, E., Israeli, M., Averbuch, A., Vozovoi, L.: A fast 3D Poisson solver of arbitrary order accuracy. J. Comput. Phys. 144, 109–136 (1998)

    Article  MathSciNet  Google Scholar 

  5. Briggs, W.L., Henson, V.E.: The DFT: An Owner’s Manual for the Discrete Fourier Transform. SIAM, Philadelphia (1995)

    MATH  Google Scholar 

  6. Buhmann, M.D.: Radial basis functions. Acta Numer. 9, 1–38 (2000)

    Article  MathSciNet  Google Scholar 

  7. Coifman, R.R., Meyer, Y.: Remarques sur l’analyse de Fourier à fenêtre. Comptes Rendus Acad. Sci. Paris Sér. I 312, 259–261 (1991)

    MATH  MathSciNet  Google Scholar 

  8. Dodgson, N.A.: Image resampling. Technical Report UCAM-CL-TR-261, University of Cambridge (1992). ISSN: 1476-2986

  9. Hardy, R.L.: Multiquadric equations of topographic and other irregular surfaces. J. Geophys. Res. 76, 1905–1915 (1971)

    Google Scholar 

  10. Hardy, R.L., Gopfert, W.M.: Least squares prediction of gravity anomalies, geoidal undulations, and deflections of the vertical with multiquadric harmonic functions. Geophys. Res. Lett. 2(10), 423–427 (1975)

    Google Scholar 

  11. Hardy, R.L., Nelson, S.A.: A multiquadric-biharmonic representation and approximation of disturbing potential. Geophys. Res. Lett. 13(1), 18–21 (1986)

    Google Scholar 

  12. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts in Applied Mathematics. Cambridge University Press, New York (1996)

    Google Scholar 

  13. Malvar, H.S.: Lapped transforms for efficient transform/subband coding. IEEE Trans. Acoust. Speech Signal Process. 38, 969–978 (1990)

    Article  Google Scholar 

  14. Malvar, H.S., Staelin, D.H.: The LOT: transform coding without blocking effects. IEEE Trans. Acoust. Speech Signal Process. 37, 553–559 (1989)

    Article  Google Scholar 

  15. Mayo, A.: The fast solution of Poisson’s and the biharmonic equations on irregular regions. SIAM J. Numer. Anal. 21(2), 285–299 (1984)

    Article  MathSciNet  Google Scholar 

  16. Micchelli, C.A.: Inerpolation of scattered data: distance matrices and conditionaly positive definite functions. Constr. Approx. 1, 11–22 (1986)

    Article  MathSciNet  Google Scholar 

  17. Rabut, C.: Elementary m-harmonic cardinal B-splines. Numer. Algorithms 2, 39–62 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Saito, N., Remy, J.-F.: A new local sine transform without overlaps: A combination of computational harmonic analysis and PDE. In: M.A. Unser, A. Aldroubi, A.F. Laine (eds.) Wavelets: Applications in Signal and Image Processing X. Proc. SPIE, vol. 5207, pp. 495–506 (2003)

  19. Saito, N., Remy, J.-F.: The polyharmonic local sine transform: A new tool for local image analysis and synthesis without edge effect. Appl. Comput. Harmon. Anal. 20(1), 41–73 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Unser, M., Van De Ville, D., Blu, T.: Isotropic polyharmonic B-splines: Scaling functions and wavelets. IEEE Trans. Image Process. 14(11), 1798–1813 (2005)

    Article  Google Scholar 

  21. Wahba, G.: Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59. SIAM, Philadelphia (1990)

    MATH  Google Scholar 

  22. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error measurement to structural similarity. IEEE Trans. Image Process. 13(4), 600–613 (2004)

    Article  Google Scholar 

  23. Yamatani, K., Saito, N.: Improvement of DCT-based compression algorithms using Poisson’s equation. IEEE Trans. Image Process. 15(12), 3672–3689 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Saito, N. & Wang, Y. PHLST5: A Practical and Improved Version of Polyharmonic Local Sine Transform. J Math Imaging Vis 30, 23–41 (2008). https://doi.org/10.1007/s10851-007-0044-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-007-0044-3

Keywords

Navigation