Skip to main content
Log in

Vision-based Control of a Delta Parallel Robot via Linear Camera-Space Manipulation

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

One of the open problems to control a parallel robot in real-time is the larger number of parameters to be incorporated in the control model when compared to serial robots. This paper presents an innovative vision-based method to control a delta-type parallel robot based on Linear Camera-Space Manipulation. The proposed method is a simple and robust technique capable of achieving real-time control of robots without relying on the calibration of either the robot or the environment parameters. To document the robustness of this technique, a sensitivity analysis was performed in simulation where the effect of two sources of error on the end-point positioning are considered. Such sources are the variability of each link’s parameters, and the uncertainty of the visual measurements. Experimental results on a Clavel’s delta parallel robot show that end-point positioning errors obtained with Linear Camera-Space Manipulation are less than 1.5 mm, demonstrating a low sensitivity to parameter uncertainty in qualitative agreement with the simulation results. The results show that the developed approach is advantageous to control parallel robots for industrial applications in real-time and can obviate to a number of open problems common with the control of parallel robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pandilov, Z., Dukovski, V.: Several open problems in parallel robotics. Acta Technica Conviniensis, Bulletin of Engineering, Tome IV, 77–84 (2011)

  2. Zhou, W., Chen, W., Liu, H., Li, X.: A new forward kinematic algorithm for a general stewart platform. Mech. Mach. Theory 87, 177–190 (2015)

    Article  Google Scholar 

  3. Liu, G., Wang, Y., Zhang, Y., Xie, Z.: Real-time solution of the forward kinematics for a parallel haptic device using a numerical approach based on neural networks. J. Mech. Sci. Technol. 29(6), 2487–2499 (2015)

    Article  Google Scholar 

  4. Ibaraki, S., Okuda, T., Kakino, Y., Nakagawa, M., Matsushita, T., Ando, T.: Compensation of gravity-induced errors on a hexapod-type parallel kinematic machine tool. JSME Int. J. Ser. C 47(1), 160–167 (2004)

    Article  Google Scholar 

  5. Šika, Z., Hamrle, V., Valášek, M., Beneš, P.: Calibrability as additional design criterion of parallel kinematic machines. Mech. Mach. Theory 50, 48–63 (2012)

    Article  Google Scholar 

  6. Traslosheros, A., Sebastián, J.M., Torrijos, J., Carelli, R., Castillo, E.: An inexpensive method for kinematic calibration of a parallel robot by using one hand-held camera as main sensor. Sensors 13(8), 9941–9965 (2013)

    Article  Google Scholar 

  7. Clavel, R.: Conception d’un robot parallèle rapide à 4 degrés de liberté. PhD thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (1991)

  8. Guglielmetti, P.: Model-based control of fast parallel robots. PhD thesis, EPFL (1994)

    Google Scholar 

  9. Liu, K., Lewis, F., Lebret, G., Taylor, D.: The singularities and dynamics of a stewart platform manipulator. J Intell Robot Syst 8(3), 287–308 (1993)

    Article  Google Scholar 

  10. Merlet, J.-P.: Parallel robots: Commande

  11. Ozgur, E., Dahmouche, R., Andreff, N., Martinet, P.: A vision-based generic dynamic model of pkms and its experimental validation on the quattro parallel robot. In: 2014 IEEE/ASME international conference on advanced intelligent mechatronics (AIM), pages 937–942 (2014)

  12. Tsai, R.Y.: An efficient and accurate camera calibration technique for 3d machine vision. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 364–374, Miami Beach, FL (1996)

  13. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. J. Robot. Autom. RA-3(4), 323–344 (1987)

    Article  Google Scholar 

  14. Tsai, R.Y., Lenz, R.K.: A new technique for fully autonomous and efficient 3d robotics hand/eye calibration. IEEE Trans. Robot. Autom. 5(3), 345–358 (1989)

    Article  Google Scholar 

  15. Traslosheros, A, Sebastian, J.M., Angel, L., Roberti, F., Carelliz, R.: Visual servoing of a parallel robot system. In: IEEE international symposium on intelligent signal processing, 2007. WISP 2007, pages 1–6 (2007)

  16. Bellakehal, S., Andreff, N., Mezouar, Y., Tadjine, M.: Force/position control of parallel robots using exteroceptive pose measurements. Meccanica 46(1), 195–205 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Siradjuddin, I., Behera, L., McGinnity, T.M., Coleman, S.: Image-based visual servoing of a 7-dof robot manipulator using an adaptive distributed fuzzy pd controller. IEEE/ASME Trans. Mechatron. 19(2), 512–523 (April 2014)

  18. Xu, W., Liu, Y., Liang, B., Xu, Y., Qiang, W.: Autonomous path planning and experiment study of free-floating space robot for target capturing. J. Intell. Robot. Syst. 51(3), 303–331 (2008)

    Article  Google Scholar 

  19. Xu, W., Liang, B., Li, C., Liu, Y., Xu, Y.: Autonomous target capturing of free-floating space robot: Theory and experiments. Robotica 27(03), 425–445 (2009)

    Article  Google Scholar 

  20. Seelinger, M., Yoder, J.-D.: Automatic visual guidance of a forklift engaging a pallet. Robot. Auton. Syst. 54(12), 1026–1038 (2006)

    Article  Google Scholar 

  21. Rendon-Mancha, J.M., Cardenas, A., Garcia, M.A., Gonzalez-Galvan, E., Lara, B., Robot positioning using camera-space manipulation with a linear camera model. IEEE Trans. Robot. 26 (4), 726–733 (2010)

    Article  Google Scholar 

  22. Gonzalez-Galvan, E.J., Pazos, F., Skaar, S., Cardenas-Galindo, A.: Camera pan/tilt to eliminate the workspace-size/pixel-resolution tradeoff with camera-space manipulation. Robot. Comput. Integr. Manuf. 18(2), 95–104 (2002)

    Article  Google Scholar 

  23. Cárdenas, A., Seelinger, M., Goodwine, B., Skaar, S.B.: Vision-based control of a mobile base and on-board arm. Int. J. Robot. Res. 9(22), 677–698 (2003)

    Article  Google Scholar 

  24. Baumgartner, E.T.: In-situ exploration of mars using rover systems. In: Proceedings of the AIAA Space 2000 Conference., AIAA paper 2000-5062, Long Beach, CA (2000)

  25. Chaumette, F., Hutchinson, S.: Visual servo control. i. basic approaches. IEEE Robot. Autom. Mag. 13(4), 82–90 (2006)

    Article  Google Scholar 

  26. Zhou, N., Hao, K., Guo, C, Dou, Y.: Visual servo control system of 2-dof parallel robot. In: Software Engineering and Knowledge Engineering: Theory and Practice, pages 425–433. Springer (2012)

  27. Ozgur, E., Dahmouche, R., Andreff, N., Martinet, P.: High speed parallel kinematic manipulator state estimation from legs observation. In: 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS), pages 424–429 (2013)

  28. Baumgartner, E.T., Schenker, P.S.: Autonomous image-plane robot control for martian lander operations (1996)

  29. Seelinger, M., Yoder, J.-D., Baumgartner, E.T., Skaar, S.B.: High precision visual control of mobile manipulators. IEEE Trans. Robot. Autom. 18(6), 957–965 (2002)

    Article  Google Scholar 

  30. Fan, Z.: Industrial applications of camera space manipulation with structured light. PhD thesis University of Notre Dame, Notre Dame, IN (2003)

  31. Liu, Y., Shi, D., Skaar, S.B.: Robust industrial robot real-time positioning system using vw-camera-space manipulation method. Industrial Robot: An Int. J. 41(1), 70–81 (2014)

    Article  Google Scholar 

  32. Seelinger, M., Skaar, S.B., Robinson, M.: An alternative approach for image-plane control of robots. In: The confluence of vision and control, pages 41–65. Springer (1998)

  33. Horaud, R., Dornaika, F., Espiau, B.: Visually guided object grasping. IEEE Trans. Robot. Autom. 14(4), 525–532 (1998)

    Article  Google Scholar 

  34. Maya, M., Castillo, E., Lomelí, A., González-Galván, E., Cárdenas, A.: Workspace and payload-capacity of a new reconfigurable delta parallel robot. Int. J. Adv. Robot. Syst. 10(56), 1–11 (2013)

    Article  Google Scholar 

  35. Skaar, S.B., Brockman, W.H., Hanson, R.: Camera space manipulation. Int. J. Robot. Res. 6 (4), 20–32 (1987)

    Article  Google Scholar 

  36. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, ISBN: 0521540518, second edition (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Maya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coronado, E., Maya, M., Cardenas, A. et al. Vision-based Control of a Delta Parallel Robot via Linear Camera-Space Manipulation. J Intell Robot Syst 85, 93–106 (2017). https://doi.org/10.1007/s10846-016-0413-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0413-5

Keywords

Mathematics Subject Classification (2010)

Navigation