Skip to main content
Log in

Autonomous Shape Control of a Deformable Object by Multiple Manipulators

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Shape control of a deformable object by a robotic system is a challenging problem because of the difficulty of imposing shape change by a finite number actuation points to an essentially infinite dimensional object. In this paper, a new approach to shape changing of deformable objects by a system of manipulators is presented. First, an integrated dynamic equation of motion for a system of multiple manipulators handling a deformable object is developed. The initial and the final shapes of the deformable object are specified by curves that represent the boundary of the object. We design an optimization-based planner that minimizes an energy-like criterion to determine the locations of the contact points on the desired curve representing the final shape of the object. The motion of each manipulator is controlled independently without any communication between them. Finally we design a robust controller for shape changing that can work in the presence of modeling uncertainty. The simulation results demonstrate the efficacy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erzincanli, F., Sharp, J.M.: Meeting the need for robotic handling of food products. Food Control 8(4), 185–190 (1997)

    Article  Google Scholar 

  2. Denkena, B., Scherger, S.: A concept for shoe last manufacturing in mass customization. CIRP Ann.-Manuf. Technol. 54(1), 341–344 (2005)

    Article  Google Scholar 

  3. Bone, G.M., Capson, D.: Vision-guided fixtureless assembly of automotive components. Robot. Comput.-Integr. Manuf. 19(1–2), 79–87 (2003)

    Article  Google Scholar 

  4. Saadat, M., Nan, P.: Industrial applications of automatic manipulation of flexible materials. Ind. Robot. An Int. J. 29(5), 434–442 (2002)

    Article  Google Scholar 

  5. Henrich, D., Worn, H.: Robot Manipulation of Deformable Objects: Advanced Manufacturing. Springer, New York (2000)

    Google Scholar 

  6. Taylor, P.M.: Sensory Robotics for the Handling Of Limp Materials. Springer, New York (1990)

    MATH  Google Scholar 

  7. Zribi, M., Karkoub, M., Huang, L.: Modelling and control of two robotic manipulators handling a constrained object. Appl. Math. Model. 24(12), 881–898 (2000)

    Article  MATH  Google Scholar 

  8. Li, Z., Ge, S.S., Wang, Z.: Robust adaptive control of coordinated multiple mobile manipulators. Mechatronics 18(5–6), 239–250 (2008)

    Article  Google Scholar 

  9. Namvar, M., Aghili, F.: Adaptive force-motion control of coordinated robots interacting with geometrically unknown environments. IEEE Trans. Robot. 21(4):678–694 (2005)

    Article  Google Scholar 

  10. Tokumoto, S., Fujita, Y., Hirai, S.: Deformation modeling of viscoelastic objects for their shape control. In: Proceedings of the 1999 IEEE International Conference on Robotics and Automation, pp. 767–772 (1999)

  11. Saha, M., Isto, P.: Manipulation planning for deformable linear objects. IEEE Trans. Robot. 23(6), 1141–1150 (2007)

    Article  Google Scholar 

  12. Zhang, Y., Chen, B.K., Liu, X., Sun, Y.: Autonomous robotic pick-and-place of microobjects. IEEE Trans. Robot. 26(1), 200–207 (2010)

    Article  MATH  Google Scholar 

  13. Liu, X.Y., Kim, K.Y., Zhang, Y., Sun, Y.: NanoNewton force sensing and control in microrobotic cell manipulation. Int. J. Rob. Res. 28, 1065–1076 (2009)

    Article  Google Scholar 

  14. Kim, K.Y., Liu, X.Y., Zhang, Y., Cheng, J., Wu, S., Sun, Y.: Elastic and viscoelastic characterization of microcapsules for drug delivery using a force-feedback MEMS microgripper. Biomed. Microdevices 11(2), 421–427 (2009)

    Article  Google Scholar 

  15. Pettersson, A., Davis, S., Gray, J.O., Dodd, T.J., Ohlsson, T.: Design of a magnetorheological robot gripper for handling of delicate food products with varying shapes. J. Food Eng. 98(3), 332–338 (2010)

    Article  Google Scholar 

  16. Tavasoli, A., Eghtesad, M., Jafarian, H.: Two-time scale control and observer design for trajectory tracking of two cooperating robot manipulators moving a flexible beam. Robot. Auton. Syst. 57(2), 212–221 (2009)

    Article  Google Scholar 

  17. Tanner, H.G., Kyriakopoulos, J., Krikelis, N.I.: Advanced agricultural robots: kinematics and dynamics of multiple mobile manipulators handling non-rigid material. Comput. Electron. Agric. 31(1), 91–105 (2001)

    Article  Google Scholar 

  18. Sun, D., Liu, Y.H.: Modeling and impedance control of a two-manipulator system handling a flexible beam. ASME J. Dyn. Syst. Meas. Control 119(4), 736–742 (1997)

    Article  MATH  Google Scholar 

  19. Sun, D., Mills, J.K., Liu, Y.H.: Position control of robot manipulators manipulating a flexible payload. Int. J. Rob. Res. 18(3), 319–332 (1999)

    Article  Google Scholar 

  20. Liu, Z., Nakamura, T.: Learning the insertion operation of a flexible beam into a hole with a manipulator. Artif. Life Robot. 6(3), 155–162 (2002)

    Article  Google Scholar 

  21. Hirai, S., Wada, T.: Indirect simultaneous positioning of deformable objects with multi pinching fingers based on uncertain model, Robotica. Millenn. Issue Grasp. Manipulat. 18, 3–11 (2000)

    Google Scholar 

  22. Gibson, S.F.F., Mirtich, B.: A Survey of Deformable Modeling in Computer Graphics. MERL Techical Report, TR97-19 (1997)

  23. Zhang, Y., Prakash, E.C., Sung, E.: A new physical model with multilayer architecture for facial expression animation using dynamics adaptive mesh. IEEE Trans. Vis. Comput. Graph. 10(3), 339–352 (2004)

    Article  Google Scholar 

  24. Meyer, M., Debunne, G., Desbrun, M., Barr, A.H.: Interactive animation of cloth-like objects in virtual reality. J. Vis. Comput. Animat. 12(1), 1–12 (2001)

    Article  MATH  Google Scholar 

  25. Joukhadar, A., Laugier, C.: Dynamic simulation: model, basic algorithms, and optimization. In: Laumond, J.-P., Overmars, M. (eds.) Algorithms for Robotic Motion and Manipulation, pp. 419–434. Peters, Wellesley (1997)

    Google Scholar 

  26. Koch, R.M., Gross, M.H., Carls, F.R., Buren, D.F., Von Fankhauser, G., Parish, Y.I.H.: Simulating facial surgery using finite element models. In: ACM SIGGRAPH 96 Conference Proceedings, pp. 421–428 (1996)

  27. Pieper, S.D., Laub, D.R., Rosen, J.M.: A finite element facial model for simulating plastic surgery. Plast. Reconstr. Surg. 96(5), 1100–1105 (1995)

    Article  Google Scholar 

  28. Keeve, E., Girod, S., Kikinis, R., Girod, B.: Deformable modeling of facial tissue for craniofacial surgery simulation. Comput. Aided Surg. 3(5), 228–238 (1999)

    Article  Google Scholar 

  29. Kimura, M., Sugiyama, Y., Tomokuni, S., Hirai, S.: Constructing rheologically deformable virtual objects. Proc. IEEE Int. Conf. Robot. Autom. 3, 3737–3743 (2003)

    Google Scholar 

  30. Hu, Y.R., Vukovich, G.: Active robust shape control of flexible structures. Mechatronics 15(7), 807–820 (2005)

    Article  Google Scholar 

  31. Kashiwase, T., Tabata, M., Tsuchiya, K., Akishita, S.: Shape control of flexible structures. J. Intell. Mater. Syst. Struct. 2(1), 110–125 (1991)

    Article  Google Scholar 

  32. Dang, P., Lewis, F.L., Subbarao, K., Stephanou, H.: Shape control of flexible structure using potential field method. In: 17th IEEE International Conference on Control Applications, pp. 540–546. Texas, USA (2008)

  33. Faloutsos, P., Panne, M., Terzopoulos, D.: Dynamic free-form deformations for animation synthesis. IEEE Trans. Vis. Comput. Graph. 3(3), 201–214 (1997)

    Article  Google Scholar 

  34. Knopf, G.K., Igwe, P.C.: Deformable mesh for virtual shape sculpting. Robot. Comput.-Integr. Manuf. 21(4–5), 302–311 (2005)

    Article  Google Scholar 

  35. Celniker, G., Gossard, D.: Deformable curve and surface finite elements for free-form shape design. Comput. Graph. (SIGGRAPH’91 Proc) 25, 257–266 (1991)

    Article  Google Scholar 

  36. Rosen, J., Hannaford, B., MacFarlane, M., Sinanan, M.: Force controlled and teleoperated endoscopic grasper for minimally invasive surgery-experimental performance evaluation. IEEE Trans. Biomed. Eng. 46, 1212–1221 (1999)

    Article  Google Scholar 

  37. Kolluru, R., Valavanis, K.P., Smith, S.A., Tsourveloudis, N.: Design fundamentals of a reconfigurable robotic gripper system. IEEE Trans. Syst. Man Cybernet.-Part A: Syst. Human. 30(2), 181–187 (2000)

    Article  Google Scholar 

  38. Stone, R.S.W.Brett, P.N.: A flexible pneumatic actuator for gripping soft irregular shaped objects. In: IEEE Colloq. Innov. Actua. Mechatron. Syst., pp. 13/1–13/3 (1995)

  39. Seliger, G., Stephan, J.: Handling with ice—the cryo gripper—a new approach. Assem. Autom. 19, 332–337 (1999)

    Article  Google Scholar 

  40. Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recogn. 37, 1–19 (2004)

    Article  MATH  Google Scholar 

  41. Loncaric, S.: A survey of shape analysis techniques. Pattern Recogn. 31(8), 983–1001 (1998)

    Article  Google Scholar 

  42. Zhang, D., Lu, G.: Study and evaluation of different Fourier methods for image retrieval. Image Vis. Comput. 23(1), 33–49 (2005)

    Article  MATH  Google Scholar 

  43. Kong, X., Luo, Q., Zeng, G., Lee, M.H.: A new shape descriptor based on centroid-radii model and wavelet transform. Opt. Commun. 273(2), 362–366 (2007)

    Article  Google Scholar 

  44. Anelli, M., Cinque, L., Sangineto, E.: Deformation tolerant generalized Hough transform for sketch-based image retrieval in complex scenes. Image Vis. Comput. 25(11), 1802–1813, (2007)

    Article  Google Scholar 

  45. Tarmissi, K., Hamza, A.B.: Information-theoretic hashing of 3D objects using spectral graph theory. Expert Syst. Appl. 36(5), 9409–9414 (2009)

    Article  Google Scholar 

  46. Jain, A.K., Zhong, Y., Jolly, M.P.D.: Deformable template models: a review. Signal Process. 71(2), 109–129 (1998)

    Article  MATH  Google Scholar 

  47. Kwan, P.W.H., Kameyama, K., Toraichi, K.: On a relaxation-labelling algorithm for real-time contour-based image similarity retrieval. Image Vis. Comput. 21(3), 285–294 (2003)

    Article  Google Scholar 

  48. Mokhtarian, F., Ung, Y.K., Wang, Z.: Automatic fitting of digitized contours at multiple scales through the curvature scale space technique. Comput. Graph. 29(6), 961–971 (2005)

    Article  Google Scholar 

  49. Du, J.X., Huang, D.S., Wang, X.F., Gu, X.: Shape recognition based on neural networks trained by differential evolution algorithm. Neurocomputing 70(4–5), 896–903 (2007)

    Google Scholar 

  50. Tokumoto, S., Hirai, S., Tanaka, H.: Constructing virtual rheological objects. In: Proc. World Multiconference on Systemics, Cybernetics and informatics, pp. 106–111. Auland (2001)

  51. Chen, Y.Q., Moore, K., Song, Z.: Diffusion boundary determination and zone control via mobile actuator-sensor networks (MAS-net)—challenges and opportunities. In: Intelligent Computing: Theory and Applications II, SPIE Defense and Security Symposium, 12–16 April, Orlando, FL,USA (2004)

  52. Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control. Wiley, New York (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jadav Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, J., Sarkar, N. Autonomous Shape Control of a Deformable Object by Multiple Manipulators. J Intell Robot Syst 62, 3–27 (2011). https://doi.org/10.1007/s10846-010-9436-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9436-5

Keywords

Navigation