Skip to main content

Advertisement

Log in

High butterfly beta diversity between Brazilian cerrado and cerrado–caatinga transition zones

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Tropical dry forests are among the most diverse and threatened habitats in the world, yet they are rarely protected and remain poorly studied. In Brazil, dry forests are naturally fragmented and embedded within various biomes, thus making it important to assess biotic homogeneity among geographically separated forest fragments. We sampled 7732 individuals belonging to 48 species to quantify the diversity of fruit-feeding butterfly communities at four Brazilian dry forest sites, and found differences in community structure between northern and central sites. Species richness per plot was the same in both areas, but abundance per plot was higher in northern sites. Species composition differed between sites mostly due to species of Satyrinae. Additive partitioning showed that beta diversity corresponded to 70.1% of all diversity. Rather than species loss, beta diversity primarily represented species turnover that was potentially driven by differences in the surrounding habitats. Butterfly community composition and abundance were influenced by vegetation where abundance increased with tree density and basal area, and decreased with the average tree height. Butterfly species richness and abundance were higher in the wet season than in the dry season, and all species sampled in the dry season were present in the wet season. Differences in community structure across relatively short geographic distances in the same type of habitat highlight the importance of conserving tropical dry forest fragments to ensure the maintenance of butterfly diversity and, presumably, other insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46. doi: 10.1111/j.1442-9993.2001.01070.pp.x

    Google Scholar 

  • Banda-R K, Delgado-Salinas A, Dexter KG et al (2016) Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353:1383–1387. doi: 10.1126/science.aaf5080

    Article  Google Scholar 

  • Barlow J, Gardner TA, Araujo IS et al (2007) Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc Natl Acad Sci 104:18555–18560. doi: 10.1073/pnas.0703333104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow J, Araujo IS, Overal WL, Gardner TA, Mendes FS, Lake IR, Peres CA (2008) Diversity and composition of fruit-feeding butterflies in tropical Eucalyptus plantations. Biodivers Conserv 17:1089–1104. doi:10.1007/s10531-007-9240-0

    Article  Google Scholar 

  • Baselga A (2010) Partioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143. doi: 10.1111/j.1466-8238.2009.00490.x

    Article  Google Scholar 

  • Baselga A, Orme CDL (2012) Betapart: an R package for the study of beta diversity. Methods Ecol Evol 3:808–812. doi: 10.1111/j.2041-210X.2012.00224.x

    Article  Google Scholar 

  • Basset Y, Eastwood R, Sam L et al (2012) Cross-continental comparison of butterfly assemblages in tropical rainforests: implications for biological monitoring. Insect Conserv Divers 6:223–233. doi: 10.1111/j.1752-4598.2012.00205.x

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-8. Accessed 31 May 2016

  • Bigger M (1976) Oscillations of tropical insect populations. Nature 259:207–209. doi: 10.1038/259207a0

    Article  Google Scholar 

  • Bonebrake TC, Ponísio LC, Boggs CL, Ehrlich PR (2010) More than just indicators: a review of tropical butterfly ecology and conservation. Biol Conserv 143:1831–1841. doi: 10.1016/j.biocon.2010.04.044

    Article  Google Scholar 

  • Brito MM, Ribeiro DB, Raniero M, Hasui E, Ramos FN, Arab A (2014) Functional composition and phenology of fruit-feeding-butterflies in a fragmented landscape: variation of seasonality between habitat specialists. J Insect Conserv 18:547–560. doi: 10.1007/s10841-014-9650-8

    Article  Google Scholar 

  • Brown KS Jr, Freitas AVL (2000) Atlantic forest butterflies: indicators for landscape conservation. Biotropica 32:934–956. doi: 10.1111/j.1744-7429.2000.tb00631.x

    Article  Google Scholar 

  • Carneiro E, Mielke OHH, Casagrande MM, Fiedler K (2014) Skipper richness (Hesperiidae) along elevational gradients in Brazilian Atlantic Forest. Neotrop Entomol 43:27–38. doi: 10.1007/s13744-013-0175-8

    Article  CAS  PubMed  Google Scholar 

  • Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547. doi: 10.1890/11-1952.1

    Article  PubMed  Google Scholar 

  • Checa MF, Rodriguez J, Willmott KR, Liger B (2014) Microclimate variability significantly affects the composition abundance and phenology of butterfly communities in a highly threatened neotropical dry forest. Fla Entomol 97:1–13. doi: 10.1653/024.097.0101

    Article  Google Scholar 

  • Coelho MS, Almada ED, Quintino AV, Fernandes GW, Santos RM, Sanchez-Azofeifa A, Espírito-Santo MM (2012) Floristic composition and structure of a seasonally dry tropical forest at different successional stages in the Espinhaço Mountains, southeastern Brazil. Interciência 37:190–196

    Google Scholar 

  • Coelho MS, Fernandes GW, Sánchez-Azofeifa A (2014) Brazilian tropical dry forest on basalt and limestone outcrops: status of knowledge and perspectives. In: Sánchez-Azofeifa A, Powers J, Fernandes GW, Quesada M (eds) Tropical dry forests in the Americas: ecology, conservation, and management. CRC Press, London, pp 55–68

    Google Scholar 

  • Crawley MJ (2013) The R book, 2nd edn. Willey, Chichester

    Google Scholar 

  • Dapporto L, Fattorini S, Voda R, Dinca V, Vila R (2014) Biogeography of western Mediterranean butterflies: combining turnover and nestedness components of faunal dissimilarity. J Biogeogr 41:1639–1650

    Article  Google Scholar 

  • DeVries PJ (1987) The butterflies of Costa Rica and their natural history. Volume I: Papilionidae, Pieridae, Nymphalidae. Princeton University Press, New Jersey

    Google Scholar 

  • DeVries PJ, Walla TR (2001) Species diversity and community structure in Neotropical fruit-feeding butterflies. Biol J Linn Soc 74:1–15. doi: 10.1111/j.1095-8312.2001.tb01372.x

    Article  Google Scholar 

  • DeVries PJ, Murray D, Lande R (1997) Species diversity in vertical, horizontal and temporal dimensions of a fruit-feeding butterfly community in an Ecuadorian rainforest. Biol J Linn Soc 62:343–364. doi: 10.1111/j.1095-8312.1997.tb01630.x

    Article  Google Scholar 

  • DeVries PJ, Greeney HF, Walla TR (1999) Species diversity in spatial and temporal dimensions of fruit-feeding butterflies from two Ecuadorian rainforests. Biol J Linn Soc 68:333–353. doi 10.1111/j.1095-8312.1999.tb01175.x

    Article  Google Scholar 

  • DeVries PJ, Alexander LG, Chacon IA, Fordyce JA (2011) Similarity and difference among rainforest fruit-feeding butterfly communities in Central and South America. J Anim Ecol 81:472–482. doi: 10.1111/j.1365-2656.2011.01922.x

    Article  PubMed  Google Scholar 

  • DeVries PJ, Hamm CA, Fordyce JA (2016) A standardized butterfly sampling protocol: fruit-feeding butterflies (Nymphalidae). In: Larsen TH (ed) Core standardized methods for rapid biological field assessment. Conservation International, Arlington, pp 139–148

    Google Scholar 

  • Didham RK, Tylianakis JM, Gemmell NJ, Rand TA, Ewers RM (2007) Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol Evol 22:489–496. doi: 10.1016/j.tree.2007.07.001

    Article  PubMed  Google Scholar 

  • Espeland M, Hall JPW, DeVries PJ, Lees DC, Cornwall M, Hsu Y-F, Wu L-W, Campbell D, Talavera G, Vila R, Salzman S, Ruehr S, Lohman DJ, Pierce NE (2015) Ancient neotropical origin and recent recolonisation: phylogeny, biogeography and diversification of the Riodinidae (Lepidoptera: Papilionoidea). Mol Phylogenet Evol 93:296–306. doi:10.1016/j.ympev.2015.08.006

    Article  PubMed  Google Scholar 

  • Espírito-Santo MM, Fagundes M, Sevilha AC, Scariot A, Sánchez-Azofeifa A, Noronha SE, Fernandes GW (2008) Florestas estacionais deciduais brasileiras: distribuição e estado de conservação. MG Biota 1:5–13

    Google Scholar 

  • Espírito-Santo MM, Sevilha AC, Anaya FC, Barbosa R, Fernandes GW, Sanchez-Azofeifa A, Scariot A, Noronha SE, Sampaio CA (2009) Sustainability of tropical dry forests: two case studies in southeastern and central Brazil. For Ecol Manage 258:922–930. doi: 10.1016/j.foreco.2009.01.022

    Article  Google Scholar 

  • Espírito-Santo MM, Olívio-Leite L, Neves FS, Ferreira-Nunes YR, Zazá-Borges MA, Dolabela-Falcão LA, Fonseca-Pezzini F, Louro-Berbara R, Maia-Valerio H, Fernandes GW, Reinaldo-Leite M, Santos-Clemente CM, Esdras-Leite M (2014) In: Sánchez-Azofeifa A, Powers J, Fernandes GW, Quesada M (eds) Tropical dry forests in the Americas: ecology, conservation, and management. CRC Press, London, pp 69–82

    Google Scholar 

  • Fartmann T, Müller C, Poniatowski D (2013) Effects of coppicing on butterfly communities of woodlands. Biol Conserv 159:396–404. doi: 10.1016/j.biocon.2012.11.024

    Article  Google Scholar 

  • Figueiredo-Silva L, Souza RM, Solar RRC, Neves FS (2017) Ant diversity in Brazilian tropical dry forest across multiple vegetation domains. Environ Res Lett. doi:10.1088/1748-9326/aa5f2a

    Google Scholar 

  • Fordyce JA, DeVries PJ (2016) A tale of two communities: Neotropical butterfly assemblages show higher beta diversity in the canopy compared to the understory. Oecologia 181:235. doi:10.1007/s00442-016-3562-0

    Article  PubMed  Google Scholar 

  • Freitas ALV, Iserhard CA, Santos JP, Carreira JYO, Ribeiro DB, Melo DHA, Rosa AHB, Marini-Filho OJ, Accacio GM, Uehara-Prado M (2014) Studies with butterflies bait traps: an overview. Rev Colomb Entomol 40:209–218

    Google Scholar 

  • Gozzi MR, Beirão MV, Medeiros LR, Neves FS, Fagundes M (2008) Borboletas frugívoras em uma região de transição entre Cerrado sensu stricto e Caatinga no norte de Minas Gerais, Brasil. MG Biota 4:25–37

    Google Scholar 

  • Grøtan V, Lande R, Engen S, Saether BE, DeVries PJ (2012) Seasonal cycles of species diversity and similarity in a tropical butterfly community. J Anim Ecol 81:714–723. doi: 10.1111/j.1365-2656.2011.01950.x

    Article  PubMed  Google Scholar 

  • Grøtan V, Lande R, Chacon I, DeVries PJ (2014) Seasonal cycles of species diversity and similarity in a Central American butterfly community. Ecography 37:509–516. doi: 10.1111/j.1365-2656.2011.01950.x

    Google Scholar 

  • Heikkila M, Kaila L, Mutanen M, Peña C, Wahlberg N (2011) Cretaceous origin and repeated tertiary diversification of the redefined butterflies. Proc R Soc B Biol Sci 279:1093–1099. doi: 10.1098/rspb.2011.1430

    Article  Google Scholar 

  • Horner-Devine MC, Daily GC, Ehrlich PR, Boggs CL (2003) Countryside biogeography of tropical butterflies. Conserv Biol 17:168–177. doi: 10.1046/j.1523-1739.2003.01310.x

    Article  Google Scholar 

  • Hsieh TC, Ma KH, Chao A (2013) iNEXT online: interpolation and extrapolation (Version 1.0) [Software]. http://chao.stat.nthu.edu.tw/inext/. Accessed 14 Mar 2016

  • Komac B, Stefanescu C, Caritg R, Domènech M (2013) Forces driving the composition of butterfly assemblage in Andorra. J Insect Conserv 17:897–910. doi:10.1007/s10841-013-9571-y

    Article  Google Scholar 

  • Lamas G (2004) Checklist: part 4A. Hesperioidea-Papilionoidea. Scientific Publishers, Gainsville

    Google Scholar 

  • Lande R (1996) Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:5–13. doi: 10.2307/3545743

    Article  Google Scholar 

  • Luoto M, Heikkinen RK, Pöyry J, Saarinen K (2006) Determinants of the biogeographical distribution of butterflies in boreal regions. J Biogeogr 33:1764–1778. doi: 10.1111/j.1365-2699.2005.01395.x

    Article  Google Scholar 

  • Madeira JA, Fernandes GW (1999) Reproductive phenology of sympatric taxa of Chamaecrista (Leguminosae) in Serra do Cipó, Brazil. J Trop Ecol 15:463–479

    Article  Google Scholar 

  • Madeira BG, Espírito-Santo MM, D’Ângelo-Neto S, Nunes YRF, Sánchez-Azofeifa A, Fernandes GW, Quesada M (2009) Changes in tree and liana communities along a successional gradient in a tropical dry forest in south-eastern Brazil. Plant Ecol 201:291–304. doi: 10.1007/s11258-009-9580-9

    Article  Google Scholar 

  • Marques T, Schoereder JH (2013) Ant diversity partitioning across spatial scales: ecological processes and implications for conservation in tropical dry forests. Aust Ecol 39:72–82. doi: 10.1111/aec.12046

    Article  Google Scholar 

  • Neves FS, Fonseca VH, Espírito-Santo MM, Vaz-de-Mello FZ, Louzada J, Sánchez-Azofeifa A, Fernandes GW (2010) Sucessional and seasonal changes in a community of dung beetles (Coleoptera: Sacarabaeinae) in Brazilian tropical dry forest. Nat Conserv 8:160–164. doi: 10.4322/natcon.00802009

    Article  Google Scholar 

  • Neves FS, Silva JO, Marques T, Mota-Souza JG, Madeira B, Espírito-Santo MM, Fernandes GW (2014) In: Sánchez-Azofeifa A, Powers J, Fernandes GW, Quesada M (eds) Tropical dry forests in the Americas: ecology, conservation, and management. CRC Press, London, pp 221–236

    Google Scholar 

  • Neves DM, Dexter KG, Pennington RT, Bueno ML, Oliveira-Filho AT (2015) Environmental and historical controls of floristic compositions across the South America dry diagonal. J Biogeogr 42:1566–1576. doi: 10.1111/jbi.12529

    Article  Google Scholar 

  • Nobre CEB, Schlindwein C, Mielke OH (2008) The butterflies (Lepidoptera: Papilionoidea and Hesperioidea) of Catimbau National Park. Pernamb Brazil Zootaxa 1751:35–45

    Google Scholar 

  • Nobre CEB, Ianuzzi L, Schlindwein C (2012) Seasonality of fruit-feeding butterflies (Lepidoptera, Nymphalidae) in Brazilian semiarid area. ISRN Zool. doi:10.5402/2012/268159

    Google Scholar 

  • Norden N, Angarita HA, Bongers F, Martínez-Ramos M, Cerda IG, Breugel MV, Lebrija-Trejos E, Meave JA, Vandermeer J, Williamson GB, Finegan B, Mesquita R, Chazdon RL (2015) Successional dynamics in Neotropical forests are as uncertain as they are predictable. Proc Natl Acad Sci 112:8013–8018. doi:10.1073/pnas.1500403112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Öckinger E, Dannestam A, Smith HG (2009) The importance of fragmentation and habitat quality of urban grasslands for butterfly diversity. Landsc Urban Plan 93:31–37. doi: 10.1016/j.landurbplan.2009.05.021

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt P, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) Vegan: community ecology package. R package version 2.4-2. https://CRAN.R-project.org/package=vegan. Accessed 14 Mar 2016

  • Pennington RT, Prado DE, Pendry CA (2000) Neotropical seasonally dry forests and quaternary vegetation changes. J Biogeogr 27:261–273. doi: 10.1046/j.1365-2699.2000.00397.x

    Article  Google Scholar 

  • Pennington RT, Lavin M, Oliveira-Filho AT (2009) Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu Rev Ecol Evol Syst 40:437–457. doi: 10.1146/annurev.ecolsys.110308.120327

    Article  Google Scholar 

  • Penz CM, Tufto J, DeVries PJ, Lande R (2015) Butterfly dispersal across Amazonia: implications for biogeography. Ecography 38:410–418. doi: 10.1111/ecog.01172

    Article  Google Scholar 

  • Pezzini FF, Ranieri BD, Brandão DO, Fernandes GW, Quesada M, Espírito-Santo MM, Jacobi CM (2014) Changes in tree phenology along natural regeneration in a seasonally dry tropical forest. Plant Biosyst 148:965–974. doi: 10.1080/11263504.2013.877530

    Article  Google Scholar 

  • Pozo C, Luis-Martínez A, Llorente-Bousquets J, Salas-Suárez N, Maya-Martínez A, Vargas-Fernández I, Warren AD (2008) Seasonality and phenology of the butterflies (Lepidoptera: Papilionoidea and Hesperioidea) of Mexico’s Calakmul region. Fla Entomol 91:407–422. doi: 10.1653/0015-4040

    Article  Google Scholar 

  • Prado DE, Gibbs PE (1993) Patterns of species distribution in the dry seasonal forest of South America. Ann Mo Bot Gard 80:902–927. doi: 10.2307/2399937

    Article  Google Scholar 

  • Quesada M, Sanchez-Azofeifa GA, Alvarez-Añorve M et al (2009) Sucessional and management of tropical dry forests in the Americas: review and new perspectives. For Ecol Manage 258:1014–1024. doi: 10.1016/j.foreco.2009.06.023

    Article  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 14 Mar 2016

  • Ramos FA (2000) Nymphalid butterfly communities in an Amazonian forest fragment. J Res Lepidoptera 35:29–41

    Google Scholar 

  • Ribeiro DB, Prado PI, Brown KS Jr, Freitas AVL (2010) Temporal diversity patterns and phenology in fruit-feeding butterflies in the Atlantic Forest. Biotropica 42:710–716. doi: 10.1111/j.1744-7429.2010.00648.x

    Article  Google Scholar 

  • Ribeiro DB, Batista R, Prado PI, Brown KS Jr, Freitas AVL (2012) The importance of small scales to the fruit-feeding butterfly assemblages in a fragmented landscape. Biodivers Conserv 21:811–827. doi:10.1007/s10531-011-0222-x

    Article  Google Scholar 

  • Robinson N, Armstead S, Bowers MD (2012) Butterfly community ecology: the influence of habitat type, weather patterns, and dominant species in a temperate ecosystem. Entomol Exp Appl 145:50–61. doi: 10.1111/j.1570-7458.2012.01308.x

    Article  Google Scholar 

  • Sánchez-Azofeifa A, Calvo-Alvarado J, Espírito-Santo MM, Fernandes GW, Powers JS, Quesada M (2014) Tropical dry forest in the Americas: The tropi-dry endeavor. In: Sánchez-Azofeifa A, Powers J, Fernandes GW, Quesada M (eds) Tropical dry forests in the Americas: ecology, conservation, and management. CRC Press, London, pp 1–16

    Google Scholar 

  • Särkinen T, Iganci JRV, Linares-Palomino R, Simon MF, Prado DE (2011) Forgotten forests—issues and prospects in biome mapping using seasonally dry tropical forests as a case study. BMC Ecol 11:27. doi: 10.1186/1472-6785-11-27

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahabuddin G, Terborgh JW (1999) Frugivorous butterflies in Venezuelan forest fragments: abundance, diversity and the effects of isolation. J Trop Ecol 15:703–722

    Article  Google Scholar 

  • Si X, Baselga A, Ding P (2015) Revealing beta-diversity patterns of breeding bird and lizard communities on inundated land-bridge islands by separating the turnover and nestedness components. PLOS ONE 10(5):e0127692. doi: 10.1371/journal.pone.0127692

    Article  PubMed  PubMed Central  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (2000) Butterfly community structure in fragmented habitats. Ecol Lett 3:449–456. doi: 10.1111/j.1461-0248.2000.00175.x

    Article  Google Scholar 

  • Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scale. Ecol Lett 17:866–880. doi: 10.1111/ele.12277

    Article  PubMed  Google Scholar 

  • Torres C, Osorio-Beristain M, Mariano NA, Legal L (2009) Sex-dependent seasonal feeding activity variations among two species of Nymphalidae (Lepidoptera) in the Mexican tropical dry forest. Ann Soc Entomol FR 45:265–274. doi:10.1080/00379271.2009.10697610

    Article  Google Scholar 

  • Turner JRG, Gatehouse CM, Corey CA (1987) Does solar energy control organic diversity? Butterflies, moths and the British climate. Oikos 48:195–205. doi: 10.2307/3565855

    Article  Google Scholar 

  • Uehara-Prado M, Freitas AVL, Francini RB, Brown KS Jr (2004) Guia das borboletas frugívoras da reserva estadual do Morro Grande e região de Caucaia do Alto. Cotia SP Biota Neotropica 4:1–9. doi: 10.1590/S1676-06032004000100007

    Article  Google Scholar 

  • Valtonen A, Molleman F, Chapman CA, Carey JR, Ayres MP, Roininen H (2013) Tropical phenology: bi-annual rhythms and interannual variation in an Afrotropical butterfly assemblage. Ecosphere 4:1–28. doi:10.1890/ES12-00338.1

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York

    Book  Google Scholar 

  • Wardhaugh CW (2014) The spatial and temporal distributions of arthropods in forest canopies: uniting disparate patterns with hypotheses for specialization. Biol Rev 89:1021–1041. doi: 10.1111/brv.12094

    Article  PubMed  Google Scholar 

  • Welling EC (1959) Notes on butterfly migrations in the Peninsula of Yucatan. J Lepidoterol Soc 13:62–64

    Google Scholar 

  • Wolda H (1978) Fluctuations in abundance of tropical insects. Am Nat 112:1017–1045. doi: 10.1086/283344

    Article  Google Scholar 

  • Wolda H (1989) Seasonal cues in tropical organisms. Rainfall? Not necessarily! Oecologia 80:437–442. doi: 10.1007/BF00380064

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Isabela Oliveira, Fabiola Ladeira, Ana Carolina Pires, and André Aroeira for help during fieldwork; Luiz Eduardo Reis and Luiz Falcão for helping in the logistic, Geanne Pereira and Vanessa Diniz for helping with the organization of the butterflies; Eric Pereira and Gabriela Duarte for helping with the map; André Victor L Freitas and Eduardo Barbosa for helping the butterfly identification. We gratefully acknowledge the staff of the Instituto Estadual de Florestas (IEF-MG) and Instituto Chico Mendes (ICMBIO), for allowing us to stay and work in the parks, and for logistical support. We thank the grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; Grant No. 563304/2010-3), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG; Grant Nos. CRA-APQ-04738-10, CRA-APQ 00001-11) and the Inter-American Institute for Global Change Research (IAI-CRN II-021). MVB acknowledges a research scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). This study was in partial fulfillment of requirements for a PhD degree to MVB at the Universidade Federal de Minas Gerais.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina V. Beirão.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10841_2017_24_MOESM1_ESM.docx

Supplementary material 1 T1 Species list and abundance of fruit-feeding butterflies sampled in dry forest habitats in Minas Gerais, Brazil. Northern sites: Lagoa do Cajueiro, Jaíba, Serra Azul. Central site: Serra do Cipó. Subfamily abundances are indicated in boldface. (DOCX 79 KB)

10841_2017_24_MOESM2_ESM.tiff

Supplementary material 2 F1 NMDS plot showing similarity of butterfly species composition per area. The clear separation of the northern and central site communities redirected subsequent analyses to a regional level (instead of a local level). (TIFF 9134 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beirão, M.V., Neves, F.S., Penz, C.M. et al. High butterfly beta diversity between Brazilian cerrado and cerrado–caatinga transition zones. J Insect Conserv 21, 849–860 (2017). https://doi.org/10.1007/s10841-017-0024-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-017-0024-x

Keywords

Navigation